
Distributed Transaction Explained
through TLA+

1Accela Zhao 2018/5/23

Outline

• Snapshot Isolation – First Impression

• Percolator.tla – Walkthrough

• Snapshot Isolation – Revisited

• Serializable Snapshot Isolation

2

Snapshot Isolation – Why this

• Why talking about snapshot isolation for understanding transactions?
• Transaction ACID

• A – Atomicity – Usually by journaling. Or build by single row atomic operations
• Not today’s topic

• C – Consistency – Need to manage race condition between concurrent transactions
• Then we have Isolation Levels.

• I – Isolation – Still, Isolation Levels.
• Snapshot Isolation is the most commonly used Isolation Level.

• D – Durable – Disks, replications, Paxos, erasure-coding, etc
• Not today’s topic

• As you can see, snapshot Isolation is they key to understand transaction
• We will begin with direct impressions
• Next we walkthrough how Percolator implements it
• Then we can extract the accurate rules for SI to work right

3
P.S. “Snapshot Isolation” was mostly first proposed by Microsoft, in paper Critique ANSI isolation levels

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf

Snapshot Isolation – “Snapshot”

• Snapshot Isolation – Requirement 1/2 – “Snapshot”
• Transaction (Tx) reads by first taking a “Snapshot“

• The second read gets same value, even underlying data is changed, because
we read on snapshot

• Usually, snapshot is a timestamp. That means, Read(Tx1, key1) and Read(Tx1,
key2) return values of the same time point.

4

Tx1

Tx2

Time

Read(Tx1, key1) Read(Tx1, key1) again Write(Tx1, key2)

Write(Tx2, key1, valX)

Take snapshot

Snapshot Isolation – WW-conflict

• Write-Write conflicts (ww-conflict)
• Tx1 and Tx2 overlap. And, both Tx1 and Tx2 write to same keys.

• Snapshot Isolation – Requirement 2/2 – Abort ww-conflict
• Actually, the rule is not a necessity for Serializability. See later (or this Critique

SI paper).

5

Tx1

Tx2

Read(Tx1, key1) Write(Tx1, key2)

Write(Tx2, key2, valX)

https://drive.google.com/file/d/0B9GCVTp_FHJIMjJ2U2t6aGpHLTFUVHFnMTRUbnBwc2pLa1RN/edit

Snapshot Isolation – RW-conflict

• Read-Write conflicts (rw-conflict)
• Tx1 and Tx2 overlap. And, Tx2 changes what Tx1 read in the middle.

• Tx1 is actually operating on stale data, it may result in data inconsistency.

• Snapshot Isolation allows such case. It’s called Write Skew anomaly. See SSI
paper

6

Tx1

Tx2

Read(Tx1, key1) Write(Tx1, key2)

Write(Tx2, key1, valX)

https://drive.google.com/file/d/0B9GCVTp_FHJIcEVyZVdDWEpYYXVVbFVDWElrYUV0NHFhU2Fv/edit

Snapshot Isolation – Write-Skew Issue

• Example of Snapshot Isolation Write-Skew (from wiki)
• Suppose two bank accounts V1, V2. We allow deficit, but V1 + V2 >= 0 is required.

• V1, V2 each has $100 balance. T1 and T2 each tries to withdraw $200 from V1 and V2.
Individually, they are OK. But in parallel, they write skew.

• Some walkarounds for Write Skew (from wiki)
• SELECT FOR UPDATE: let reads be promoted as writes, so they will conflict

7

T1 T2Bank V1 V2

$100 $100 Read V1, V2 Read V1, V2
V1 + V2 >= $200? => Yes

Take $200 from V1 Take $200 from V2
V1 + V2 >= $200? => Yes

Write V1 = -$100 Write V2 = -$100

Commit Commit

-$100 -$100
Inconsistency,
V1 + V2 < 0

https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation

Outline

• Snapshot Isolation – First Impression

• Percolator.tla – Walkthrough

• Snapshot Isolation – Revisited

• Serializable Snapshot Isolation

8

Why TLA+ to Understand Percolator

• Who’s using TLA+
• AWS

• How Amazon Web Services Uses Formal
Methods

• Why Amazon Chose TLA+, Google Group

• TiDB (Popular startup to build Spanner-like DB)

• Github Pingcap / tla-plus

• Official blog. An author's blog.

• Alibaba X-DB & X-Paxos

• InfoQ news. Reviews on Zhihu

• Papers adopting TLA+ as format proof

• CASPaxos

• Lamport is putting significant effort on TLA+

• Lamport publications. See how many "TLA"s

9

• TLA+ Benefits
• Strict math, complete, concise

• Good for understanding complex
protocols like Percolator

• Auto tools
• TLC – Check state enumerating and

invariants

• TLAPS – Math derive the invariants

• Learning TLA+
• Lamport's TLA+ page, the TLA+ book

• Part I is mostly what we need

• Links in “Who’s using TLA+”

• Github DrTLAPlus

http://www.cslab.pepperdine.edu/warford/math221/How-Amazon-Web-Services-Uses-Formal-Methods.pdf
https://pdfs.semanticscholar.org/311c/5538d00421623ec73e14ef93ae0fbdae2392.pdf
https://groups.google.com/forum/#!topic/tlaplus/UwYW6XqyDvE
https://github.com/pingcap/tla-plus
https://github.com/pingcap/blog-cn/blob/master/Spanner-cap-truetime-transaction.md
https://www.jianshu.com/p/721df5b4454b
https://mp.weixin.qq.com/s/BCBRewfxCg2i3bDqmHzoLg
https://zhuanlan.zhihu.com/p/32109820
https://arxiv.org/pdf/1802.07000.pdf
https://lamport.azurewebsites.net/pubs/pubs.html
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/book.html
https://github.com/tlaplus/DrTLAPlus

What is Percolator?

• Google’s distributed transaction implementation, for batch web index processing,
built on BigTable
• Paper: Large-scale Incremental Processing Using Distributed Transactions and Notifications

• Achieves ACID transaction, with Snapshot Isolation, with MVCC and optimistic
locking, and falls in category of 2-phase locking
• We’ll see how these “words” come from later

• A popular distributed transaction implementation
• TiDB is borrowing a lot from Percolator. CockroachDB is also learning from it
• Spanner share many things similar to Percolator

• It can go to another topic

• Github tla-plus / Percolator / Percolator.tla TLA+ spec
• Good for understanding. And can tweak/run with TLC.

10

https://ai.google/research/pubs/pub36726
https://github.com/pingcap/blog-cn/blob/master/tidb-transaction-model.md
https://github.com/pingcap/blog-cn/blob/master/tidb-transaction-model.md
https://github.com/pingcap/tla-plus/blob/master/Percolator/Percolator.tla

Percolator.tla - State Overview

• Start – Obtain start timestamp
• Obtain Tx’s start timestamp `start_ts` from a central

timestamp oracle

• Get – Will do many things
• Cleanup stale locks

• If a lock is older than me, clean it. It will make former Tx unable to
commit (i.e. new Tx preempts old).
• Paper shows more graceful conditions of cleaning lock

• Commit secondary keys
• A Tx write many keys, Percolator select one as primary key, others

as secondary
• Secondary keys are lazy committed by other Tx’s Get.

• Doing actual read

11

Percolator.tla - State Overview

• Prewrite – Lock every key before commit
• “Lock” in Percolator is quite different from other systems

• Just a DB record. No actual pending.

• If the key has newer write than me, cannot lock.

• Acquire lock will *write* data (i.e. bal:data)

• Commit
• Write “write record” (i.e. bal:write), which makes data visible, and release locks.

• Tx only commits primary key, other secondary keys are left lazy commit, by following Txs (see Get)

12

Percolator data structure in BigTable

Version: Actual Data
Version: Pointer to data.
Only when pointed by this column,
data is considered committed

Percolator.tla – Walkthrough the Spec

• Github tla-plus / Percolator / Percolator.tla TLA+ spec
• (Planned to walkthrough with previous slides)

• Some hints for understanding TLA+ symbols
• “/\” means “AND”, “\/” means “OR”. (They are math)

• “key_data' = [key_data EXCEPT ![l.primary] = @ \ {[ts |-> l.ts]}]”
• Means “key_data[l.primary] removes [ts: l.ts]”

• Demo – Run Percolator.tla with TLC
• `java -cp ./tla2tools.jar tlc2.TLC -deadlock -workers 4 Test1`

13

https://github.com/pingcap/tla-plus/blob/master/Percolator/Percolator.tla

Percolator.tla - Examples

• Tx1 is preempted by Tx2
• Although Tx1 acquired lock, the lock is later cleaned up by Tx2

• Tx1 cannot commit.

14

Tx1

Tx2

Read(Tx1, key1) Abort(Tx1)Lock(Tx1, key1)

CleanStaleLock(Tx2, key1) Read(Tx2, key1)

Tried to commit key1, but
found lock is gone

Will always cleanup locks
before read.

Write(Tx1, key1)

Write is on a snapshot,
not visible data

Percolator.tla - Examples

• WW-conflict is aborted
• If both Tx1 and Tx2 tries to commit to same key, their locks overlaps

• One of Tx1 or Tx2 will abort.

15

Tx1

Tx2

Read(Tx1, key1) Commit(Tx1, key1)Lock(Tx1, key1)

Lock(Tx2, key1) Commit(Tx2, key1)

Write(Tx1, key1)

Cannot happen

One of the lockings should fail.
Because lock requires no overlap

Percolator.tla - Examples

• RW-conflict is aborted
• Tx1 locks key1. Locking requires key1 has no any newer writes.

• Since key1 was modified in the middle, Tx1 cannot lock it and will abort.

16

Tx1

Tx2

Read(Tx1, key1) Commit(Tx1, key2)Lock(Tx1, key1 & key2)

Commit(Tx2, key1)

Write(Tx1, key2)

Cannot happen

Locking should fail. Because lock
key1 requires no any newer writes

Outline

• Snapshot Isolation – First Impression

• Percolator.tla – Walkthrough

• Snapshot Isolation – Revisited

• Serializable Snapshot Isolation

17

How Percolator.tla Enforces Snapshot Isolation

• Snapshot Isolation – Requirement 1/2 – “Snapshot”
• Read/write is based on timestamp.

• If a key is read, then older commit cannot proceed
• Otherwise, visible history would have been changed

• Enforced by: In Get, newer read will clean all stale lock. Older Tx cannot commit without lock

18

Verified byEnforced by

How Percolator.tla Enforces Snapshot Isolation

• Snapshot Isolation – Requirement 2/2 – Abort “ww-conflict”
• All primary and secondary keys, no matter read or write, all locked before commit
• Only one overlapped lock can succeed
• Lock enforces “no any newer writes”

• P.S. I think rw-conflict abort is also enforced in Percolator.tla
• Because all read/write keys are locked. And lock requires “no any newer writes”.
• And, this ensures Serializability

• Critique SI paper proves “rw-conflict avoidance is sufficient for Serializability.”
19

Verified by

WriteConsistency == …
LockConsistency == …
CommittedConsistency == …

Enforced by

https://drive.google.com/file/d/0B9GCVTp_FHJIMjJ2U2t6aGpHLTFUVHFnMTRUbnBwc2pLa1RN/edit

How Percolator Achieves …
• ACID

• A – No journal, but BigTable provides atomic row operation
• And, during commit, Percolator only commits primary key.

• C / I – The snapshot Isolation as illustrated previously
• D – Data & transaction states in BigTable.

• MVCC
• Percolator provides multi-version with timestamp
• Concurrency control is based on timestamp & locking

• Optimistic locking - Likely
• Read never block (actually preempt former Tx)
• Tx will executed first, without waiting for locks, but under the risk of abort

• Falls in 2-Phase Locking category
• We still see the Prewrite step first prepare each key with locking. Then we commit

20

Thinking in Abstract Level

• What is the essence of Snapshot Isolation?
• Reads never lock. That’s why it’s faster

• To abort ww-conflict, we still needs locking
• Approach 1: let newer Tx wait

• Then we are using traditional locks

• Approach 2: abort newer Tx
• Then we have something like optimistic read – compare – succ or abort

• Approach 3: abort older Tx
• What Percolator does. New Tx cleans locks of older Tx.

21

Thinking in Abstract Level

• How are we implementing the transaction?
• Problem 1: We need concurrency control for transactions

• Approach 1: we use timestamp
• Then we go to approaches of Percolator, etc MVCC

• Approach 2: we use locks
• Strict-2PC locking is still the traditional way to enforce Serializability

• Problem 2: How do we enforce the ordering of transaction read/writes?
• Approach 1: in distributed manner

• Approach 1.1: with timestamps

• As we see in Percolator, careful arranging locks and timestamp compares

• Approach 1.2: with locks

• Tx pending on locks, so they are ordered. Traditional implementation.

• Approach 2: centralized coordinator
• Critique SI paper is using a centralized status oracle, to control the total ordering

• Calvin Transaction paper is using a scheduler, which knows all transactions

22

https://drive.google.com/file/d/0B9GCVTp_FHJIMjJ2U2t6aGpHLTFUVHFnMTRUbnBwc2pLa1RN/edit
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf

Thinking in the Abstract Level

• Jump out of the box? - Eventual consistency transaction + compensations
• Distributed transactions of weaker than ACID. But quite useful and popular at Internet companies.
• Background

• We have many subsystems. Each subsystem supports ACID transaction individually.
• But we lack cross-subsystem big transactions.

• How it works
• Split big transaction into small ones, to be executed on each subsystem.
• Carry out small transactions one by one in a known workflow.

• I.e. Weak consistency, but propagating in a controlled order

• Eventually all small transactions finish. Then big transaction is done.

• How to rollback
• If we cannot proceed at certain step, e.g. conflict, we start rollback
• Rollback by compensation. I.e. use another transaction to “fix” things back.

23

Subsystem1 Subsystem1 Subsystem1 Subsystem1

Do small Tx1
Big Tx done

Do small Tx2 Do small Tx3 Do small Tx4
Big Tx

Do compensate Tx1 Do compensate Tx2 Do compensate Tx3
We hit trouble

Big Tx
rolled back

X

https://developer.jboss.org/wiki/CompensatingTransactionsWhenACIDIsTooMuch?_sscc=t

Outline

• Snapshot Isolation – First Impression

• Percolator.tla – Walkthrough

• Snapshot Isolation – Revisited

• Serializable Snapshot Isolation (Quick Look)

24

Why Serializable Snapshot Isolation – Quick Look
• What Serializable Snapshot Isolation (SSI) can do?

• Serializable isolation level.
• No need for 2PC. Performance is acceptable.

• Previously, Serializable level needs 2PC.
• Even in Percolator.tla, you can see it locks all keys.

• Can be built on Snapshot Isolation. Less engineering effort.

• How does SSI do it?
• Rw-conflict abort can get Serializability. But, it falsefully aborts unnecessary transactions,

which are Serializable however.
• Theorem: Only needs to abort the “dangerous structure”, i.e. graphs with two consecutive

rw-dependency edges.
• Rw-conflict aborting, however, aborts on every single such edge

• Papers
• SSI proposed in this paper
• PostgreSQL implements SSI and illustrates it well

25

https://drive.google.com/file/d/0B9GCVTp_FHJIcEVyZVdDWEpYYXVVbFVDWElrYUV0NHFhU2Fv/edit
https://drkp.net/papers/ssi-vldb12.pdf

References
• A Critique of ANSI SQL Isolation Levels

• Proposed “Snapshot Isolation”

• A Critique of Snapshot Isolation
• Explain Snapshot Isolation well

• Calvin: Fast Distributed Transactions for Partitioned Database Systems
• Another distributed transaction implementation

• weidagang/distributed_mvcc_cross_row_transaction.py
• Python implemented Percolator protocol

• Serializable Isolation for Snapshot Databases
• Proposed “Serializable Snapshot Isolation”

• Serializable Snapshot Isolation in PostgreSQL
• Explain SSI well, and implementation details

• Compensating Transactions: When ACID is too much
• Eventual consistency distributed transaction

• TiDB Transaction Model. CockroachDB transaction Model. Hacker News discussions.
• They are popular opensource distributed SQL databases.

26

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://drive.google.com/file/d/0B9GCVTp_FHJIMjJ2U2t6aGpHLTFUVHFnMTRUbnBwc2pLa1RN/edit
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
https://gist.github.com/weidagang
https://gist.github.com/weidagang/1b001d0e55c4eff15ad34cc469fafb84
https://drive.google.com/file/d/0B9GCVTp_FHJIcEVyZVdDWEpYYXVVbFVDWElrYUV0NHFhU2Fv/edit
https://drkp.net/papers/ssi-vldb12.pdf
https://developer.jboss.org/wiki/CompensatingTransactionsWhenACIDIsTooMuch?_sscc=t
https://github.com/pingcap/blog-cn/blob/master/tidb-transaction-model.md
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://news.ycombinator.com/item?id=10160797

