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- i -groups: Hovvever, it I not.as abstract Eroups that. mask mamemnc;arm encoumer .
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for beginhinp groduate studants in mathematics, pl)ys:cs and related elds.
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NOTATIONS.

We use the standard (Bourbnkl) notations: 1§ = 0L, & is the ring-of i integers; Q-
i$ thie ficld of rational nuhbers; & is the fleld of real numbers; T is tie field of complex
ntipbers: Fy is 4 finite Feld withy g elemehis. whicre. ¢ is & power of a prime mimber. In
particulas, Fp= - Zf pZifor pia prime mumber:

Torintegers pn-and i, i 1ieans that hr divides s, i n € mi%. Throughout the. notes,
s 2 prime number; i.c.; p 57 1L, 1600000007
" Giverd an equivalence relation, [+ denotes the squivalenis tlass containing +. The emply
set- 15 denoted- by §. The cardinality of 7 set S is denoted by |5 (so {$]'s the.nimber of.
elemepis.in § whin § s finite), Let.d and A-Be sets; a family of elomentsof A indexed by
1, denioted (2, jser chsa function 7 —a;0f = 4.1 )

“Rings.are required to have a0 identity element 1, and homomerphisms of rings-are
required.to take.1 to 1. An efement & of a-ring is a unit if i t:ms anvinverse {element & such
thatab = 1= fia). The identity clensent of A ring is required to dovs 1 on'a module ovér
the ring. ) )

X CV Xisasibselof ¥ (not necessarily proper);
¥¥%y x iz defined to be ¥, orequals ¥ by definition;
XY X idisomerphicto ¥y

X'=Y Xand¥ arecanonically isomofphic (or-there is a givén ar'unigue isomorphism);.

PREREQUISITES

An undergraduate *abstrict algebea™ conrst.

COMPUTER ALGEBRA FROGRAMS

GAP is an.open source computer algebra programy; emphasizing computational group theory.

To get started with GAF, ] recommend going to Alexander Hulpke's page here where you-will
find versions of GAP for both Windews and Macs und.a goide “Abstract Algebra in GAP' ",
The: Sage page heri: provides a front end (or GAP and other programs. Falsarecommend N.
Carter’s “"Group Explorer™lisse for exploring the su'}l'c'lure of groups of sinall order, Earlier
versions of these notes (¥3.02) described how to.use: Maple for computations in group theory.
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A famity. should be distinguished from 3 jet. For example, W £ i this function £ — £/32 seniing an
Tnteger i its £gulvalence cliss, then §, HEVG eI} ivasetwith !.h.ucelemems whereas { f1{}ex is fmily with
.31 infinise index set.

CHAPTER

Basic Definitions and Resulis

The axivms for o proup are short and hatural....
Yot somekove hidden behind thése axionis is the
Jfl‘{)}_l.g‘i‘r?’!“.l“r‘!il’j’?!é’ oroip, a Mg aned exvraordiary
neriligmatical whject, which appears 16 rely o -
mgrons Mzarre cobicidences to exisr. The avioma
Jor groups give no olmieus hint that anyihing like
“this extses;
-Richard Borehénds, io:Mathemidficians 2009,

Group thidory'is the study of symmatrics.
‘Definitions and examples-
DERNITION 1.1 A groap is adet-G-together wilh-a binary operation
(u.i:) it sk"b:G P ]
5ali's'f3_}ir_|g the following conditions:
Bz {asseciativity) lesall b0 € G,
{asbyeé =aw{he);

{32 (existence of-a nentral cl:crncnt} there exi's_ts:ai_'l;e_!e_menl.g‘ & & siich that

Gtema=gwa {1)

loraltg e &3
G3: (exigtence-of invergés) foreachw & €. there gists an a’ € G such-that.

dwg' = e=a'va,
We usuatly abbreviate (G, *)10 &, Also, we ususlly write ab for.a ¥ b and 1 for ey al-

fermatively, we writc a 45 for-a+ ) and-0 For &, In the first ‘Gise, the proup is'said to ke
maltiplicative, atd i e sécond, it is saill to be additive.

1.3 Inthe following..a, b, .. arc elements of a group G.

The theary-af greups.of finile onder idy be said 1o date rdm (he time OdeLICh)' Ta
hien e due the first sitempts ‘st classification with a view to forming o theaiy ftom a
nuimberof isdluted facts. Gulois infroduced fnto the theoiy the excrodingly ponant
idea’of a [normal] sub-group, and the comesporniding: division of groups. jnfo. sitnple
and compogite, Moreover. by shewing hal 10 every equation of (inhe degree there
comesponds 3 group of finite order on which all the propérties of the equirion depend,
Galats indigared how far reaching, the applications cf the theory mnght e, and thereby
conitibuted. greaily i indirecily, 1o its suk

Many sdditions were wiade, mainky b}"Fﬂ:l_'J'qh mathematicians. during the-middle
part of !he Emneteemh] cenlury, connecied expasition of the ihsary wis
given in-the third cdition of M. SerrevsCours o "Algdbre Shpéricure,” which vas
pubilishedd iv 1866; This was.followed in 1570 by M. Jordan's:=Triaktd det substingtions
et dex équatians algébriguer” The greater part of M. Tordan's treatise is devoted fo a
developement of the ideas of Gulois und to thicir application (o the theory of equatians,

No cansiderdble progress in the iheoiy, a¥ apari froni ils applications. was made
1l the appeisance in 1872 of Herr Sylow™s memotc “Théorémes Sur fes groupes-de
substitidiony™ it the-Gfth volume of the Mm.hrmumrhe Annalen, Sifce the date 6f this
mernoir bul moreespeaialyin n.c:nt years. ihe theory his advanced conununus]y.

W, Butnside, Thirory.of Groups af Finité Order, $307.

Galois intraduced the concept of 2 nornial sebgoup in 1832, gnd Camille Jordan in the
preface 1ovhis Traitd. . in 170 flapged Galois™-distinetion between groupes simples
and groupes mmpouécs 23 the most importapt dJLhnmmy it W theory of permutation
groups. Moreovery i ibe Trafté, Jordsa began building:s database-of finite-simple
srhoups — the aliemating groups-of degree 3t least-5 mud mgst.of the classieal prajective
tinsar-gronps.over ftekds of prime curdinality. Finally, in 1872, Ludwig Sylow published
his-famous theorems on subproups.of prime power order. )

R. Soloinon,: Bull. Ames. Muth, Sue., 2001

Why are.the finite simple groups elassifiahle?

1t is umlikely ﬁm thire js any - edsy - reason why & classifiation is poesnble:, hléss
somenne comes up witha completely new Wy W clabsily- graups. One problent, at
Teast with the zurrent methads of classilication via certralizers ol invelutions, is that
every slmplc ioroup had 1 be tested 10 see iF it Teads (o new simplo Eraups conlaintng it
‘in the contralizer of an invotutian, Far example, when the biby mongter was discovered,
ithad a dnuhle eover, which was & potential centrilizer of ab' involution in a litger
simple group, which timed out (0 be-the pioster. The munster happens te havena
doible-cover so the process stopped there, but- wnhoul thecking every tinite simple
group therd seems 10 sbvious reason-why oae canpot have an infinite chain of Jarger
and larper sporadic groups; sack of which has a double cover Lhat is a coniralizer-of
an fnvolution in the next one: Because of this probiem {amang othersy, it was unclear
until;quite date in the classification whether Uiere. would be a-finite or infinite number of
sporadi¢. groups.

Richard Borcherds, pio3g161..

{a) An elemem é qan‘sf}ing {1} id called 4 newtial elemerit, If ' isa secund such 1 elément,
then.e! = e x ¢ ='e. In fact, & s the unique element of G such that e xe = ¢ (apply
G3).

B I hea=eandasxe =e, then
h=bre=hrfavc)=(hsa)se mere=r.

Heénee the element a” in (G3) is uniguely.detemined by a. We call ii the faverse of a,
and denote ita—! {or the nepative of , and denate it —a),
¢} Not that {G1) '%hnw'i' thiat the: proflues of any ordered triple a1, @, as of clements of
] usly defined: whether we fotm ay ity first and'thers (¢1azjas, or azm
'frsl and then 2 {azashithe n:sul: is the same. In fact, {G1} implics that the productof-
any ordered n-tuple a1, az,. 2L 0 of slements of G is un:unblguous]y defined. We
prove this by induetion on /1, Tn obe muftiplication, we might ond up with

~E

'lh

“Is-un ....?"u

{ay i atng - an} a3}
s the finak product, whereas in another we mig_hl end.up with
tay - affapyy - d). @)

‘Note that the expression within gach pait of parentheses is well defined because of the
induction hypatheses. Thus, if7 = f, {2) equals (3). If4 # /. we way suppose i < f..
Then

{0 )i an) = {2y ) s v i o an))
dar:apigg o) = (lag-oai agpr --ap)) 8y 56 -an),

and'the expressions oy the tight are equal betanse of (G L),
(d) The inverse of ajas -y is ), l.a.n_i '.'.i_.e.,_lhe_ inverse iof a product is the
product 6f die Jiwverses dn the roverse undcf
{e) {33 implies that the cancellation Jaws hold {n griups,
ab=nc = h=¢, ha=ca = bm=e

‘(wultipty on leftor fgit by 4~ 1. Conversely, if & is finife; then the canceliation laws
imply {G3}: the map % > ax: G — G is injective, and hence by counting) bijective;
in panticular; e-is in the:Tmage. and so o has a right inverse: similarly, it has a left
-inversé, and the drgament in {b) dbove shows that the o iivérses are equal,

Two groups (G and (G- #"}awe. isownarphiic if there cxists o one- -to-0ne ComTeipon-
denice # = 4%, G %5 GF, such that {n ¥ Y =g’ ' B fof alla. b ¢ o3

“The ofder |G| of i group G is its cardinality. A finilé group: whgs_e order is-a power of a
prime g is called & pgreup, ]

For an element o ol a.group &, define

an-a n>0 {ncopies of 4}
LI n=0 )
a0 (jif copies of a=1)



The tsual rubes hold:

2" =g (g e ptin,

dimned. 4

It folloiws. from (4) that the set
fe &) o™= e}

is au idesd in %, and so equuls mZ for some integer i = & When m =0, a-# ¢ unless
# o= 0; and ois said 1o have infinite order. When st 50, itTs the smallest integerm » 0
such that ™ =, und d is.5aid o have firitéorder ni. T this case; a™? = a™~1_and

PR e .

EX AMPLES
L3 LewCoo bethe group (Z, 4, and; foran integer i = 1, ot Gy be thc_gmup {Z/mB, ).
1.4 Pervtitation greups. Lot S be o serand lei Sym{5} be the set-of bijections a1 § — 5.
We define the product of two clements of Sym{S} to be their compesite:
ufi=woch.
In other words, () (5) = e (8{x)] forall s¢ 8. Forany a:f,ye Sym(Shand 1 & 5,
(eafroydis)=(asA)p(m = c(Bly(MY = (o (Bophish {5)

and so a.qsociaﬁv?ly'ﬁtﬁld;._ Thé identity map 5 -+ is an identity clement for Sym(S), and
iniverses exist because we required itie elefments of Sym(S}to be bijections. Therefore
Sym{S$} s d group, called the gronp af symmetries of S. For cxample; the perniutation

grotip.on i letters 5, i dofined 1o e tie g’roup'qfsymmctrics:of- the set {1, ...} —it has.

arder nl.

1.5 Wiicn-G and H are groups. we can conslruct & new group G'x H, calted the {direct}.

product of G and H., As a set, it is the cantesian product of G and H, and mubtiplication s
defined by
(&g A = (g’ b},
1.6 A group G is eonivmutative {or abefiany! if
ab=ha, alla.beG.

In a commutative group, thé product of any finitg {not nzetssarily ordered} family § of
slements is welt defitied. for example, the empy prodiet s 2. Usually, we write commutative

gthups additively, With this notetion, Equation (4] becomes:
mapph = (mdnda, miha) = mua.
When G is:commutative,

mig-+bt=ma+mbformeZanda,b G,

xbetian ETonp” is mole common than “‘eommutative genup”, but [ prefer w e descriptive tames where
possihle, ) o .

and tite group of invertible matdees A sich thar
A DA = o

is called the symplectic groug Sp,,, ..

REMARK 1.9 A se1 S together-with 2 bieary operation (g.b) ++ 4 B8 S ~+ 5 i3 called 2.
#agura. When the binary operation is associative, {8, -} is called a semigreup. The produet.

nA‘k:f Bty

of pity sequente A = (7)1 <ixn of elements in a.semigroup § is weli-defined (see 1.2(0)),
and for afy pair A und. 8 of such sequences,

1A B = Fl 40 8), @

Let @ be the empty :¢, Le., the.sequence of elements in § indexed by the empty set,

What shoutd []8 be? EJIcarIy,' we shouid have
TIB (T A = [1BU 4 =14 = [T{ALBY = 1A ([18).

In other words, [18@ should be 4 neutra) clenicht. A semigroup with a neutral element
is called « monoid, Ina monnid, the product of any fintte {possibly zeiply} sequence of
elements s well-detined, and (8) holds.

ASIDE 110 (33 The group conditfons (G2,G3) ean be replaced by the following weaker conditions
texistence af o left neutred clement anil teft inverses): (G2 there extits an.e such thit & % ¢t = -for
all w5 (&1 For cach g & Gy there exists.an of £ G sudh thata'ea = £, To set that ihisse. Bngly (G2)
and (G3}, feva = G. wid apply (G3'Y 1o i o' and " such that 2’ #a = ¢-ang a"#a’ =g Thep

gaa’ = ewnfava’) = (o wa'bafn i) =ae (@ e a)en]) =0T a’ =,
.whence (Gﬁ). amd )
g=edasiawe'ted = ai{e’ xa) =ave,
whence (G2, . .
(b} A group cair be defined to be o set:G- with 2 bistary-ypecation satislyitip the foliowing
conditions; (g1} * is associative; (82) G is nonempty; (g5} Tor zach a-¢ &, there existsan 0”& G

such 1har o'+ @ is newtral, -As there is at most ane-neutral efement in aserwith an atsocinlive binary

opezation, these cinditions gbviously imply thase in fa). They-are minimal in te' sense that there
eXlst sits with-a binary operation satis{ying nny rwo of them but not the third. For example, {8, #§
satisfics (g1} and (52) buf nol (£3); the empty set satishies {g!) and (232 but not {32); the setof 2 2
mintriees with coefficetits it & Rekd ind with A+ B= A~ #4 satishies (521 and {4y but not fg13.

Multiplication tables

‘A binkry operatiorn on 4 finite sel cap be deseribed by itd multiplication toble;

L
eieé ea ebh ee ..
alae a ab we ..
bihe ba b be ...
cice ca o * ...

{6¥ beedines the siitement iy

and so-the map )

(matemaEw G G
makes 4 fnto 2 Z-module, Jn o commutative: group G, the dlements ol finite order furm a
subgroup G of &, called the forsion subgronp.

L7 Let-F be a field, The n.% n imatrices with coclicients in ¥ and nonzend determinant
forma-group GLyLF ) called the general lineargrosip af degrée 1. For a finite dimensional
Fuvectorspice ¥, the Filincar sutomorghisnis of ¥ :fonn a group GL{ 1} called the getierat
finear grang. of V. Note that it 12 hag dimensiof a1, then the choice.of a asis determines an
isomiorphism GE(V) ~» Gl {7} sénding &n Jutomorpliism fo ity matrix with respeet o the
basis,

LE Let ¥ be a finke dimensionaf véctor space over 1 field F. A bifinear formon Visa
mapping i ¥ x ¥ ~ F thatis linear in each varfable, An automorphism of such a ¢ is an
isomorphizm & V'— ¥ such.that '

@l ww) = @{v.w) foraliv w5V, i
The autsmorghisms of ¢ form-a group Aut(p). Let 21....,6a Be's bagis for ¥, andilar
P = (Bl e ierpan

be the matiix of . The choice of the basis identifies At} with the group of invertible
marsees 4 such that?

AT PA= P, h
When dis symmetric; Le.,
Blu ) = Blur, ) all i, € ¥,

and wondegenerate; Auk(g) is called the orflroganal groug of ..
When ¢ is Skew-symmetric, i:e.;

Hly, wy = —plu, l’) all v, &V,

and nondegenerale, Autig) is calied the symplectic groug of ¢, To this case, there exists 1
busis for ¥ for which.thé matrix of .5
0 ey,
.

i
fom= (__,m

“2When'we une the basis 10 dentify ¥ with F7he painng ¢ becomes

i bt
(:)s HI ES TIPS Y S IR
and o, b

N

Hn

. i #
I A4 is the matrix ofi with rospect 1o the basis; then o eoftesponds i the map ( H ) | ( ) Therefaze,

iy

i 8y by _ IR 4.7
fag....on)-A5 Foar| ):(ﬂ!,--‘.ﬂ‘n)"f"’ _:)_Iq:nli ( : ).( : ) e,
b L &l gy

'O exqmining thiz statement an the slandard basis vectors.for £, we see that iris equivalentto {7y,

The element ¢ is an identity element ifand only if the first-row and colurmn of the table
Simply repent the elements, Inverses éxist i€ andionly if each clerent occurs exaclly ooce
in each rovy and in each calumn {see. I.2e). If there are 7 elements, then verifying the.
associativity Taw requires checking n* equalities. o
" For the miltipication table of §3. sce the front page. Note that.each coloir pecurs
exactly once in cach row and znd each column,.

This.suggests an-algorithm for finding all groups 6f 4 given finite arder i, namely, st
all poissible muliiplication t3bles-and check the-wxioms. Except for very smalt i, his.Js net,
practical? Thetable has n? positions, and il we allow ewch position to hold.any of the
elements, then that gives a total of 2 possible tables very few of which defifie groups. Far
esample, there are 8% == 6277101 735386640 763835785423 207666416102355 444464
034512896 binary operations on 4 set with 8 lernerits, bul only five isomorgiism.classes of
groups of order § (see 4.21), :

Subgroups

PROPOSITION 1,11 Let S bea ronempty subset of @'group G I
Si: .6 €8 = abg §,and

52: def = utas,

then the binaly aperation on & makes S into 2 group,

PROOF. (81) implics that the binary operation on G defines a binary opération § x § -» §
on 8. which.is automatically associativa, By Jis'sul'n'p_l'ion_s' cottaing 2 Jeastone-¢tement a,
dts inverse ™1, and the'prodiscl e =z, Fifially {82) sirows that the inveries of slements
in S lein§, o

A notiempty subset & satisfying {$13 and (52} iscalled a subgroup of G. When § is
finite, condition £$1) iinpligs (S2): Jet & € Sythen {a.a2,.. C5; and 5o a has Girifle order;
say @" = ey naw ™! = " &S The exainple (14, +3'C (%, +) showis that (ST} doss not
imply (S2) when-5 is infinite,

EXAMPLE 1.]13 The centre of a proup G is.the subset
ZN ={ged| gx=xg forall re G},
Bt s 2 subgroup of G,

PrOPOSITION 1.13 Anintersection of subsronps of G-is.a stbgroup of G.
PROGF. Tt isnonemipty because it containg e, and {§1).and (S3} obviously hold, a
ReMARK 1.14 T is generaily rue that an intersection bf_sgbuhjec:s.pf an algebraic object

1 s subobjeet. For example, an intersection of subtings ofia-fing is a subring, an ibtersection
of submodaies of A module is 2 sitbmodule, and so on,

PROPOSITION 1,15 Forany subsef X of a [roip G,:_-_i.l‘ierc isa smaljest subgroup-of G
contzininmg X, It consists of all inite prodiicts of efements nf ¥ o fheie frvmecme frarabitioe -




PROOF. The intersection S of all subgroups of G-containing Xis again-a subgeoup con- Hlustrate the-groups D3 and Dy. In the general case

taining. X, and it is evidently the smallestsuch gronp, Clearly $.contzins with X | alk finite

B e 2R o R R Y | &
produets- ufeleman\ of X and their inveries, Buf e set of such products satisfies {517 and thme sh=er srsmrTh (osr=rtis)
182 and heneé is & subproup containing X, If thigrefore Equals S. Y Thest e quilites intply that
L& 65 | 4
£ * - The subgroup § given by the propesition 3 denoted (X7}, and is called the subgroup Dy =ler et E N ‘r" 5hy
é &G. 4 'h generated by X. For example, {8} = {e}. I every ‘elementof ¥ has Muite oriler, for example,

[:ﬂ@\

it

&3

if'G is finite, then the set of ali.finite products-of elements of X is already a group and 50

, SO [X),
o say thal X generutes G- it Go= { X}, ies if every eloment of G can berwrificn us 3

i mle product of eleménts [rom X and their invene, Nolé that the order-of an element g of
"4 group is the order of the subgroup (a} it generatés.

EXAMPLES

1.16. The cyclic groups, A-proup is said to.be cyelic if itis generated by a single elewient,
i.e. i G = {r) for some r € G. Ifr has finitc order iz, then

Gelorrton ™ Waly, ¥ el modn,

and G can be thoaght of as the geoup of fatutional symretries dbout the ceritre af 4 regular
- polygon with n-sides. If v fias infinite order, then
Gmlunr™ et Gy Foe b
Thus, vp-to isomorphism, there is exactly one eytlic group of order a for each n-%.00. In
Future, we sheli loogely use Gy to.denote any cyclic group of order » {not necessanily Z/nd
orZ. ' '

1.17 The dittedral groups D} Forn = 3. Dy is the group of symmetries of a-regular
polygon willy fi- ~sides.d Number tie vertices 1. ... .in the counterelockwise direction, Let 7
‘be the:rotation through /0 about U cénitre ol palygon (so i . {4 & modu}, and Tet s
be the reflection in the ling = rotation.about the Yric) through the verlex 1 and thie' cemre of
the polygon (50 f e k2 i, modt), For example, the pictures

/
Ter .

’“{zei
iy a3

] &+ _1
=1 2ed

| 33
ral—2end s

*This geotip i denotdd Dan ar Oy depending on whether e suthor is viewing it absmely of concrowly as
thee symnetries of an - pnlygun {or perhips on whether the aulhor is o group theorkst o mon; see modSdi4),

Ipee Tormally, Dy can be defitied be. (he subgmu;l of 3x gcnmt:d by rifer 4§ dmo ) and
EHECEE {iovixed 1) Theat all the staterndaty cmiccmmg Frn cui prmcd wkhtut appealm,g 5] ;,cummr)

Groups of small order

[Fur) m=6, there are thiree groups. o grodp G,
_ahid two grinps Cg #Ca and Sa.
Cayley Amercand. Math. § (I §78). p. 51,

~ For zach prime g, ieré is only onc group of ardér. p, famely Cp {see 1.28 below), Tn the
foliowing table, € -+ 7 = t means Ihat there are:c commutative graups and » neneotmuiaive,
grotps (up to isomarphism, of course). )

[3] { e+n=r | Groups Ref.
4| Z40=2 [ Lo CaxCo 418
Gl1+1=2 |Ca:Sa 4.23
Bl342=8 | Gy CoaxCa CaklaxCai .8y 421
$12+0=2 | Cy. Gl 1.8

AU b+E=2 | CeDs 5.14
12[243=5 | €13, € X Cgi Cax S5, 44, (4 Cs 516
14| 141=2 | Ca Dy 5.14
I5jt+h=1 |-Ci5 ERES
(6] 5+9=14 | SecWild 2005

15| 243 =8 | Crai C3% Ci Das$3 x5, (G XC)

201 243=5 |:Crp.CaxCroiDinCsnCy,labja®=b? = ? =abe)

A1 51=2 | Cnifabia® =6 =1 bd =ah?y
22| 1= Ca2 D1y 514
24 |34 12= 15 | gronpprops. subwiki org/wiki /Groups of order 24

Here {a;hje® =4 =el = ale) s the grotip with generajoes «and b and telaitons a5 =
b2'= ¢ = abe isee Chapter 23, Ibis the dicyelic gronp.

Roighly speaking, the more high powers of primes divide n, the more grotups of ordern.
there shoild be, In tact: it f{x) is the number of ismorphism classes of gmups ol order. ",
then

Fln) < pigrret e

where ¢(n} is the largest exponent ol a prime dividing x and o{1) -0 as efn) ~ 20 (sce-
Pyher 1993),

-By 2081, a complets irredundant listof groups ¢f order = 2000 had been faund ~—up (0.
isomorphism, there are exacly 19,510,529,484 (Besche ci al’ 2001)7 '

1n Fuct Besehye ef al-did not consimicl the ooy of order B4 indlividually, bur it 15 Ktown that there arg-
STIRSATY grobps afalat order. The retnairimg ¢ 423764082 groups of onder up ta HHKY Fof which 40541062
hive grder 13363 are wvalabte dslibiaries in GAR and Magma | would guess thit st is. the smallest mmber

such that lhe £k numher-of gmups of that wRler 15 Unknown: qI)crct Hu!:i:noctﬁéts_i ,‘;év 1. 20][2’/
+
N ~ : ‘9 94 B &

T . F

and it 3§ tlear frotm the geomelry thi fhe clements of the set arc-disi_incl. and so {Dy| = 20,
Let ¢ be the reflection inthé Tine thipugh:(hi midpeinl of the side joining the venices I
and 2 and the centre of the polygon {so.f =i 43— miod #). Then r = ry. becayse

f.liril+2--1‘.5;£+'H+3."{.H+2'—!‘)'=l‘ +1 mods.

Hence £, ={&,r) and

H=e P=e 5P =e={m,

Wn. dofine Py to be Cp=-{1,r}and Bz lobe Oy % €z = {1,55.08). The group Dy
s uliwrvalled the Kletn Viergruppe or, more- simply, fhe d-grotp. Note that D is the full
proup of permutations of {1....3} It is the smalfest. fHigneamntative Jroup,

BY adding 2 tick at each vertin ()f a r!.bulnr pulygon we can redice its Symmetry group.
from 1 to &y By adding & lirie; from thi centre of the polygon to Lie verex 1, we reduee
fts symmedry- group lo {z). Physicist like W say that we have-“broketi the sy mtpetry”,

L. 18 . The quaternion group O+ Leta = ( J“:—]— ‘/;_1) and b = {_31). Then

a* =, a2=8% bub™ =a® (50 ba = ah)
The subgroup of GL2{€) generated by -and b is
JBoah,athadhy

g =le.a.atia®

The group & canalse be described a5 the subset {41, i 4 f bk of e quatemion algebrd

“H. Reeall ihat

= BRI @Ry oRE
with 1hé multiplication determined by
i =k =—ji,

The map § =4, f v blextends uniquely to a'homorhurphism H — M2(C) of Realgebrus,
which faps-the groap (4, f) Isamorphically ontor{e, A},

.19 Recill that Sy & the pérmutation grovp.on {1.2, ..., n}. A frarsposition is a permy-
Lirion. that interchanges twg Slements | iivzs. ulf other clemerts Onchianged.. 1L is aot
difficull o see that Sy is generated by transpositions (set (4:26§ below Ter 2 more. proéise
statoment.

Homomorphisms

DEFINITION 1.20 Aromomorphism [tom 2 group 3 10.0 second G i 4 map o G —G'
such ihiit o {ah} = o{dyor(b} for. dla,be G. Anlsoinorphism is & b1_]aclwc homomorphism.

For example, _t_he d'clcm.i.naul map det: GLy{F) — F* is a hamomerphism..
1.3} Let @ bie a lomemorphism. For any clements'dy, ... of G,

(@) et} = {1 {7 B )
= a (i) hi(dg-am)

=wfa ) efim)
ani’so-homomorphisms presecve ofl products. In paiticular, form = 1,
6™} = ala)™, )
Mareover grfe).= afee) = a(e)ale), andsi afe) =¢ {opply 1.22), Alsd
aa’le= e = g7e = wlddilal) = & =ala™ alak,
and so () = (@)=, It follows that (4} holds for all m & Z, antd s0-4 homomarphisin of

CommuTaTvE SRR 15 also & homomorphism 6f E-medules.-

As we noled above, each row of the, iltiplication table of a group is ‘s-permutdtion of
the elements of the group. As Gayley pomied out, s allows one to realize, the: group. as a
ETOUD G LTI

THEGREM 1,22 (C-AYLE‘.r) Thire is.a canonical inj::-‘:ri";c'horﬁonwgphism

o G — Sym(G),

PROOE, Fora e G definé ap1 G — G 1o bethe mapx b ax (eft multipllcation by &), For
x e,
(ag by )ixt = aLthn(x)) =ap(bs) = abx = {abLixh:

cand sa (b} = ag o by, As ep = id, tis implies that

diote )y =id=(a"" ) oay.

A 56 gy, is-a bijection, i.en, 2y € Sym(G). Henco ¢ =¥ gy, is a homomomhism G—
Sym(G),.and it is injeetive because of the sancélation liw;

FROOE. List the diemnents of the group as 4y, .. 4

Unforunately, pnlessn is small, 5, is-100 farge.to-be manageable. We shall see latg; -
{4.22) that G can.often be embedded in a permatation group of much smaller order than'n!,

e P’Wﬁ*’*

COROLLARY 1.23. A fintite jroup of orders ean be realized 45 a subgroup of Sy .2 J‘ l{? é,{ FZ f.._|

}-’iﬁo f f-)ig



Coséts
For o.subset Sof g, group O ardl.an elemtent & of G, we let

a8 = {,ri,';_'];i' €5}
Wa={rais 8}

Beeause of the-nssociativity faw, a (68} = (218, and so wetan denote this setunambigo-
ously by.abs. ) )

When /i3 » subgroup of G, the seis-of the fort o/ aré.called the left-cosets ol 5
in'G, and the sets of the form Ha are called the right cosets of i in G. Because ¢ & &,
aff = # ifand only if o€ &

EXAMPLE 1.24 Let G = (R¥,+), and fet H be a sabspace of dimension -gine trough:

the origin), Then thi cosels (left or right of M ‘are the lines o -+ &- paallelio H.

PROPOSITION §.25 Let H be a-snbgroup of 4 group G.
{a} An clomeent @ of G fies in 3 Joft cosst € of H i and only if € = aH,
&) Twa [ell cosets are citficr disjoint or equal.
{e)al = bH JFandenly B ‘b s A.
{d) Any two Jeft cosers have the samo number.of clements (possibly infinite).

PROOE, (a) Certainly o & uff. Conversely, if'a ties in'the left coset B, then @ = &) for
some f, and 5o o
uHf =hhH = bH,

{6Y IE € and & are not disjoint, ther they have i eommon clement 2, and € = af and
C=al by (a),

@IEa™E 5 M, then H =a~lbH, ynd so af = aa"'BH = bH. Conversely, if’

af = FH then H = o= 15K, and soa~be H.
ti) The map (52! ) . ah vo-bh 15 a bijection aff — bH. o

The index (G i H) of H in G is defined 10 be the-vumber of left cosets.of & in &9 For
example, (G 1) s the ardér.of G, N
. Asthe jeficosets of H in G cover G, (1.25) shows that they farm 4 partition G, In
othtr words, the condition “q and b 1i¢ in the same lett coset™ is.an equivalence relaticn on
Gl

THEOREM ! 26 {LAGRANGE) If 6 l's-ﬁni.le,' tfien
(G =(G:H)H: 1)

In partieniar, the-order of overy, subgratp of a finite group divides M order of the group.

PROOCE. The left cosets of #-in & form 2 partition of G there gre (G ¢ H) of them, snd
each feft coset has {FF 1) elenicnts, o

‘COROLLARY 1.27 ‘The onder of each clemont of a finite group divides the order of the
group.
xtore fornually, 16 +-H) §5 e cartiniity, of the set{a i las G}.

“EXaMPLE 1.33 LetG = GLla{Qlyondlet § = HEIEE: Z} ;Then Hisa subgroup of

Giinfact H 22 Z. Let g = (F.4). Then

Uy 5 N1 a5 0 _ {1 &
flo ¢ “lo 1/e fle J=lo 1)
Hence gHg™ & H (and g"iﬁ_g'gf ).

PROROSITION. 134 .4 subigroup N of G is noomal if and only if every Jeft coset ot N [n G
Is also a Hght caser, in which case, gN = Ng forsli Fed:
Paoor. Cleiuty,

NgTl =N ==ogN =N
Thus, if ' is normal; then evéry left coset is right coset (it fact, ¢ = Ng). Conversely, if
the-Left caset g N 15 alse o right coset, then it fust be the Hht coset Mg by (1.2%a). Hence
N = Ngoand so gNg™t = N, "

1.35 The proposition: $ays that, in-order for M to b normal; we fust hiuve that for all
g & Gandin € N, theft exisis.an i’ € ¥ such that. g =n'g {equivalentlyy for dli g & G
and i #, thereexists an ' such.that ng. = gu"). In oiher words, 16 say that ¥ isnamial
Attt saying that an-élement of G can be maved past an clerent of § at the cost of
replacing the element of & by afoth elementof ¥

BXAMPLE 136 (0} Every subgroup of index two'is.nommal, Tndecd, let g & G~ Then
G = H ugH (disiolnt uriony, Hence g isthe complement of J in G, Similarly, Hg is
the completient of H in G, and ¥o gH =g,

{b) Consider ihe difiedral group

LR T e SO )

Then Cp == {evr...., 7"} has index 2, and hence i iormal.. For .3 3 fie subgroup {e, s}
-1s nét normal because Y sr = #7725 ¢ fe,s) )

(e} Every subproup of o commatative. group is normal {obviously), but the converse

is false: the quaternion gioup - is not cormmutarive, Eutre'very'subgm_l.:p is normal (see
‘Exercise 1-1}, ) ' .

Agroup € issaid 10 be simple i it hras no normat subgroups other than G and {e}. Such
& group can-still have lots. of noonormai subgroups — in fact, the Sylow theoreims (Chapicr
5} imply that every finite graup. his sontrivial subgrotms unless it (s cyclic of prime order.

‘Proposimion 1,37 IF H and N are subgroups of G and N fs normyl, then HN is a
subgroup of G If H is-also nomal, thert 5 N is a porma subgfonp of G,

PROOF. Thesel HN is nonempty, and
ESTTSILITTY £ Mhaninas HE,

and 50 itis closed under multiplication. Since

“andl. &0 (7

'PROOF. Apply Lagrange’s theotem 1o & = {¢): recalling that. ( 1 1) = order(z),

BXAMPLE {28 I G hasorder p, # prime, ihen every-element of G- iss order ) or p. Bul
only ¢ Has order |, and sg G is gEnerated by ay element u- ¢ In-pasticilar, G is cyclic
p- Thils. shows, for. exnrple that; up toTsombrptis, thert is only grie groug:

: R Aep : o B DR " B0
afdedar |, 000,000, (07 (bevayse-this nmber is prime). In fad (here:are ogly two grotps af

order 1,000,806, 014, 000,000, 049 tsee 4.18),

1.29 Fob asubset §of G, It 571 = (£~ [ £ € §Y, ‘Then (wH)~F is the right coser Ha ™!,
and (Ha)™ = u" #, Thercfore §'++.57 defines 5 ang-to-one cornespoudence between
thie set of left coséts and the setof right cosets under which a#f +» Ha™F, Mence (G 1 Yis
alsa the nunber of right eogets of A In G- But, in generdl, a left coset will not be aright

cgsét (see [:34 belowl,

1.3G Lagrange’s (heorem has 2 partiil converse: if a pitme p divides m = (G 1), then G
hias ani element of order p (Cavchy's theorem 4,13); if a prime power p® divides:ar, then G
hos's suligronp of urider p" (Sylow's theorem 5.7). However, note that the d-groinp Cy ¥
has order 4, bt has no element.of vyder 4, and A4 has order-12, bur has ni subgronp of order
6 (see Exercise 4-135).. o

Muore genetally, we have the foliowing result
PROPOSITION 1:31 Forany subgrodps = K 6F G,
{GiK)=(C:HYH 1K)
(meaning vither Both-are. fnfinfle or both are finfte and cqu:if)_.
PROOF, Write G = ;¢; &4 (disjoint union), aad H = | e s Pty K (disjoint union), On

filiplying the second equality by g/, we find that gl = ;e gy K (@isjoint waion),
and 50 = U:.;E: wi e K (disjoint union). This shows that

(G : K) = U] = (Gt HYH - K. a

Normal subgreups
When 5 and T are Lworsubisets of 2 group G, welel

ST={s1|se8,1¢T)

Because of the

ously os AST.

A subgroup & of G is normal, denoted ¥ 0 G, if gNe™ =W forall g € 6,
caff et

intivity law, R{ST) = (_RS)'T‘ &l so-wo-can denate this et unainbigu-

REMARK (.32 Tb show that N is normal, it suffices torcheck that gNp~" ¢ A for all 7,
because multiplying this inclusion in:the left and right with ¢ and g respectively gives
the inclusion & < g1 My, and reweiting this with g™ for g'gives that ¥ ¢ gNg™ forail
g However, the next éxiunple shows that-there can exista subgroup N of a grivtp G and an

elcnitent g of F such diat gWg™! < N but gNg=! 2 N

1t is also closed under the formation of laverses,and so BN i subgroup, Tfboth & and N
“are normal, then

BHNg ™ = gHy ™ -gNg™ = HN
forall g € G- =

Anintersection of normal subgrotps of 4 group is agdin 2 normal subgroup (ef: 1.14),
Therefore. we can define the normal subgronp generated by ¢ subset X of'a group & (o

b the intersection of the normal subgroups-containing X, Its description in terms of X

is a fittle-complicated.. We say that a subset of a grolp & 15 sermal {or closed under
eonfugation} i gXg™' C X forall g € 6.

LEMMA. 138 If X js normal, then the-s:}bgmup.(x} geseraied by it is bormal,

PROGE, The map-“conjugation by:g”, a = gagt, is # hememorphism G- G, I g £ {X},
58y, 6 = Xp5e ¥ witheach xy. or its inverse in X, then

gag™h = (erpg e (egng N
As ¥ is cliosed tinder conjugaiion, each gxigtor s inverse Hesin X, dhdso g{8)p-t &

X} o

LEMMA-1.39 For any subsct & of G, the subset Wpeg 8% is normal, mid t.is the
simallest hormal st containing X

BROOF. Obvious. o

©n combiing these kemmas, we obtain the following proposition,

Prorostrion 1,40 Theaermal subjgioup genersied by a subset X of G is ) eg 22N

Kernéls and quotients
The kernel of a homomerphism o: G — ' is
Ker(e) = {5 € Gla(g) =e}.
o isinjective, then Ker{p) = teh Conversely, if Kerlo) = {e}, thén ois njective; beeause
aHg) = alg) = (g ) = = g Vg e = g g,

BROPOSITION.1.4] The keret ofa bbmomm-p_ﬁism_i’s‘ 4 normal subgroup,
PROOF. Itis obvipusly a subgroup, and ifa e Ker(p), so that ee{e) = e, and g & .G, they

a(gag™) = algataaiz)™ = afgatg) =,

‘Hence pug™! € Ker (o). o

For éxample, the keme! &f tie horotbrphism der GEy{F) ~ £ * is the group of n x n
mattites with detérminant 1 — this. graue SL 0 5 ic enlled the caeaiol Hrsnr aramn of
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PROPOSITION: 1 42 Every.normal subgroup acens as the kemel ofa homamorph:sm Muore
precisely, it .. a norntal- subgroup of G, then there i3 2 unigue-group structare ou the set
G N -of cosets of N in G for which the na:um! mapdts [g]: G < G/N isa humnmmphhm

PROGOF, Write the cosets as left cosaty, and define (AN YhN) = (@h)N . We have w check:
{a) that this is well-defibed, snd (b} that it.gives 2 gﬁmrwmeset of cosers. Tt will
then be ahvigus that the:map g »> gN is-2 homemorphism with kémnel V.

(). LetaN = o'W and 6N = &'N we have te show that abN =a'b’. B

£33

ab® = dibN) = o{b' N1 = akt' m.::'{Nb_‘-l L a'b' .

{b}. "The product js.certainty askociative, th coset M. is.an identity element, dnd 2™ ! M-

-is-an inverse for a & - i3

The group G/ N is called the’ quotiént of G by N
Propositions 141 and 1.42 show fhat- the normal subgrouns are cxactly the. keinels of

‘hamomorphisnis.

N

PROPOSITION 143 The miap @ - dN1G — GIN -fus fetmiilN G_{N

the Tolfowing bniversal propecty’ for uny homamorphism'
@: G — ' of groups sich rhaw(!\r) =fel. I.here exists 4
unigue bomomarphism G/ N — G’ making the dngram at
right commute:

PROQF., Notethat fof n & M. dign) = a(geln)
cosed gV of W in @, Ittherelope definés a map

Qemnt

= arfg ), ainl 0.0 is constant oneach left

BGIN =G, GlgN)=alp),

and & is 3 homeniorphismn because
E(eN)- (&N =g’ V) = algg) = a(Holgy = dlg)F(g A,
Thie uriiguéness of @ follows from the Sirjectivity of & - G/ N, n
EXAMPLE 1 44 (a)-Consider the subgroisp mE of Z. The quatient group ?J,-i' p is.a eyclic
group of grder b, -
(b} Let L-bé a'line throlgh the origin’is B2, Then- %2/ L Ts.isomerphicio K rbecansé it

is 2 one-dimensional vector space over K)..
{¢)For n.= 2, the quotient D, /lr) = (7.5} (eyclic group of ardet 2,

Theprems concerning homomorphisms

The théorems in this’ subsection are sometimes called tlic isomorphism theorems (first,.

second, .. oyorfinst, thind, L o00n, Lk

*Same aithirs say “Tactor™ insead 6l "ciuotienl"._ bat this van e conlused with “direct fsctoe®.

P

(@ H CH" = H CH',in which: L.m(H’ H)"(H’ H);
b} H iz nanm! i G if d.l'ld anly if H is noimal in G, in ‘whivh case, o :nduccs a7
rﬁnmarphl.\m
G/H S GA.
proor; i A i & subgroup of G, ihen o' (H) is easily seen 1o be. a-subgroup of G
containing N, and-if & 18 a subgroup of G, then o{H}is a subgroup of G (see [43).

Clearly, o (H}y = HN. which equats H ifand only if # > N, and-ae=' (H) = #.

Therefore, the two operations give the rcqmred tijection. The remaining statemients are

- easily veiilted, Fcrexarnple, a decomppsition H' = UIEI aiH of H' intoa digiéint unien

of left cosets of H gives 2 sitilar decompasition = { ey oo 1. of A, 5

CORGLLARY |48 Let N be # normal subgmup ofG ilien there is'a one-to-one comespon-
‘dente betwesn the setof ips of 7 8 N and the setof subgroups of G/N,

H & BN, Moreaver H. :s norma! in (7 ifand orﬂy lfH,(N is narmal i G N . in Wwhich

case the homomaomhism g v».g N1 G = G N induces an isomomhist

GIH 5 (GINVUHINY,

‘PROOE. This is the special casg of the theorem in which o is:g =+ g G =+ GIN.. £

BXAMELE 1,49 Lot 6= Dy and et W be iis subgroup.(r2). Recall (1.47) dhatsrs™! =73,
and sbsrtsl= (r 3} =r, Therefore & is.normal. The gronps G and G/N have he
following. laitices of subgroups:

Dyl

Direct products

LetGhea group. and et .o ‘Hk be subgroups of G. We say that.G; is'a direet proiuct
of the suhgroups iy IE the map

My Az hpy e kg b T B R Hysoenx Hy = G

is.an isomorphism of groups. This means thit each element g 6f @ an'be witien uniguely
in the formyg = fyfip ohig, B € By, and that ifg s By g eeelry and g7 = i} Ii_a_"irh;cgtlm_i-

( kh;._).

The following propositions give criteria for 2 group to be'a ditect produc of subproups.

g5’ = Ut Y hah)e--

-using (137} shows that A --
forthe subgmups Hi...

FACTORIZATION OF HOMOMORPHISMS.
__,_,_.‘———-‘-‘_'—‘—\—._._‘__

‘Recall that the imape of amap 2.8 — Tis e{$)= {ufs) | v & 8}

THEOREM 1.45 (HOMOMORPHISM THEOREM) For ahy. homom(irpﬁ:'mr w G = G of

.groups the kem:.! N of i i & normal subgroup o! G, the image f ofu is i subgrioup of o,

anafey Frctors ina na!umf way into the copiposite.of' 4 sugjéction, ar isorniorphism, ‘arid an
Fnjection:

el " -3 y feld
gv—ng sunecive
G/N .M; i

twmorphsm

iniective’
L. * im age

PROOR. We have already ; A the kernel is a normal subgroup of G. If b = o {a)
and ' = wie), then b = a{ad’) and b~ = a(d™"), and 40 7 o u:{G) is a subgroup of
G'. The umvers'll propedy of quoucnls {1.43) shows- {Hat the map X o(x)sG — [ defines
a.homomorphism &: G/N — Iwith @{gh) = wlgh The humomo:pmsm & is-corainly

surjcelive, and if #(gN) = e, then £ € Ker(rx] N, and sa & has rivial kemel. This 111_1_pl|es
that it is injective: (p. 200, o

THE 1SOMORPHISM THEOREM

-THEOREM. 1, 46 {(ISOMORPHISM THEOREM) Let H be asubgroup of ¢ and N a normdl

subgioup of G.- Then HN isa- stbgrotip of G, H NN isa normtal subgroogy of H, und'the

-mag

BHONY = AN HIH N = NN
is am-isomorphism.
PROGE. We have alréady séeni {137} that AN is a aibgroup. Consider the map,
H—GiN, kN
This s & homomorphism: andits kervel is ' A, whick is therefore normal in &, Acgording
o Theerem 143, the map induces an isomorphism H/H NN = Fwherd s its image,
But J is-the set of cosets of the form =N withhe /e, [ = HN/N. =

I i$ not hecessary to assuine that & be dormal in G as longas ANAET! = & forall

he H {i.e.. H is contained in the rlurmnl:zer of N — seeJater), Then & "N is stlI] nﬁrmzll

in #. but it need not be 3 normal subgroup-of 6.

THE CORRESPONDENCE THEOREM

The naxt thenremi shows Ihal Gis 'quotien! group of G, then ihe latiice 6f‘suhgmup_§ in
¢ caplures thie structure of the Tattice of subgrovps of G 1ying over thekernel of G - G,

THEOREM 1,47 (C_dRREspdNbENCE THEOREM) Let oG —» G be.a siwjective homo-
maorphism, and let ¥ = Ker{a}. Then there is 2 gne-to-one- corespondence

{subgronps of G conlainfag &'} u tsubgraups of Gt

under which a.subgruap H of G containing ¥ corresponds to H=ulH ) and.a subgroup
H nfG carresponds to H.= o {AY. Moreover, if H < Hand #' « H', then

PROPOSITION 1.50 A grobp Gis a direct product of subgroups Hy. Ha if and only if
@) G =HiHs. )
(b), HyNHz = {e}:and ) o
() every elemodt of H) commotes whit every clemont of Fa.
PROGE. If G is the difect produét of M3 and ff2, then. ceftainly {a) angd (c) hald, and (b}
hotds becanse, for any-g & HyTh Hz, the elemient Gz, ™" ) inipsto & under (g, hzh s hufa)
#nd 50 egials {e, ¢}
Conversely‘ foh u‘nplaes that (fryhiz) =+ fp B is 4 hsmomorphism, and (b) implies that it
is injective:
) fmhy=e =5-fl1"‘fl EHIH.Hz---{E‘,.

Finally, (z) implies that it.is surjective: o,

PROPOSITION L5] A gmup G s £ diveet produci of subgroups Hi{, Ha if and oily if

(8} G = HiH,.

{63 HyriHy ={e}, and

{c) K1 ang-Hy are both noimal in inG.
PROOE. Cenainly, mcs;-_.condmcns areimplied by those in the provisus proposition, and 8¢
it rémains to show thau they imply. that each tlement iy of H; comimutes with each efemeit
iz of ‘Ha. Two elements:fy Az of a-group.commute if and only if their commutater

Pra Bz 3 (hleaf inhr)™

is e But

{(hhahTl o

hl-(.frz.‘_li_-lh;') '

which is in- H> because Hy is normal; and is in Hy because f}_'l_'is normal. Therefore 1)

(b (hahy) ™Y o= bl Vit =
_ . A 2

- implics Uiy ] = €, o

PROPOSITION | 52 A group & I a direct product of subgréups 5y, Ha.. ..
if

{af G = HyHyor

{by foreach j, Hy ﬂ (111 o i Hipee -Hy) = {e}, and

ie) cuch of Hy. Ha, i Hy is nptiudl in G,
PROOF. The necessity of the conditions being gbvious, we-shall prove only the sufficienicy..
For & = 2. we have just.done ihis, and 5o we argue by induction o k.-An intluétion argiment
<Hy_y isa-normal subgroup of G. The conditions (a:b.c} hold
Mg of Hy oy nm:i.'s_o the induction hypothigsis shows that

H}. if and aniy

(it iz o ) o Rz iyt Hix HaX oot By — HyHa e Hyoy

is an isomoerphism. The pair Hy--- Hyoq, My satishies the hypothests of { i.513, an& S0
Cr by b Bl (B - Hp ) % Hy =G
is also.an isomorphisn, The composite-of these isomorphisms

a0 (Bl o fig )
——

. . IR PSS LY
Hy s w Ky 1 4 Hy, Ty e Hpoy XNoH --'-5-}::---5—3-.9

sends {}il_.h'z,;; ) WAy fp-hy a



Commautative groups

“The classification of finitely genemtcd COTNIEIIVG Eroups is most. naturatly studied as-part
of the thebry of modules overa pnn{:lpaI ideal domain, but, for the sake of complatencss, |
Anludde an elementary exposition here.

Let. M be 4 commutitive group, wrilisn addidvely. The Subgroup {xy,..., X3} of M
generated by the elements %j...., %} conststs of the sums Tmpxy; o € 8. A subsat

{x00en. 2 of & s basis for M it gencrates M and
BT
Prissdeb mge =0y 68 == iy = 0 for every
then

M=t} e -l

‘Lamsa 1.53 Letaq,,..,x, generate M. Eor any.cy.. ..o & N with god{ey,... = 1,
theré exist generators yy,. .., yp. for M such thatyy =611 v -k cpap.

PROOE, We.argue by inductionon s = ey - - o . The lemma certainly holds if s = |,

-and so we assume s > 1. Then, at luast (wo £y are nonzero, say; ¢ = €3> 0. Now

& {X1. X34 20,03, 00, X | ERTRTAtES AT
¢ gediey ~ex, .03, -, 05} = 1,.and
¢ e~y tégbotip <y,

Aed so, by fuduction, there exist generators yi,....py for M such that

¥ = er—ag)xy Foafy S22} +caki oo oy
=erxy b ooh e s a

THEOREN 1.54 Eveg finitely gencrated commtative group M- hasa Busis;hepee tis a
finite direci sum 07 ‘cyelie groups.

PROOP: "We argue by induction on the number of genefators of M. If M .can be generated

by one element, the. Statement i trivial, dnd so we may assumé that it requires ar. le::sl kil

generatdrs. Anong the generating sets {xy,.... x5} for M witl k clements there is one for

which the order of x; is the smalfest possitite, We shall show-that M is then the direct sum

of {x1} and {xa,... %} This will complete the proof. because the induction hypothesis

provides us with s basis for thie second group, which together with %y forms a basis for A,
1 M5 riot the'direiil sum of {£3} and {xz,...,xz). then there exists 1 refation

X g b iy = 0 {10

withmyxy # 0, After possibly changing thé sign of some of the x;, we may suppose that
L. 6 Hoand my < onder(n ). Let d = ged(my,....otg) > 0, and Jel ¢; =y /.
Accorditig to the leruna, thers exists.a gcncraung SELFY o B Suchthat yy =0 xg 4o+
cpag, But

dyy =gy +maxe Lo ey =0

and d < ory < order(yy), and 30 this cantradicts the choive of {x4,...,4.]. o

1ohn Krillwell tefls me ihaf, for finife commulative grotgys, this is simifar 1 che fiju proof of die theorem,
given by Krmwdcker 2 1ET0,

is the nuriber of elements of ordei dmdm;. 2. Simitarly; p? witl divide some py" in 1)
:f .mcl only 3 M has an élement of vrder p2, jn'which cade it will divide exactly & of the

# where pt=b p” s the number of elements it M of orderdividing p?. Commmng in
T.hm fashion, we. find that the e]emeutm-y divisors of M can be read.off from Icnowmg the
numbers of elements of M of each prime power order,

The uniguencss of the invariant faciors can be derived from that of (e célementary
divisurs, or-it can be proved direetlys a; is the smallest i mtegcr = O such that e, M == O gy
is the smadlest jntéger = O sueh that ny_1 M s C}"Llit, N2 is the smallestd integer such (hat
% y-2 can be expressed as a prodict of two eyclic groups, and-se on. ]

SUMMARY .58 Bach finité coramutative group is isorhorphic to-exacily ohe of the:groups
Cry#er e Ly Ay [B20e v et i

The-atder of this-proup is erea1. For example, each commutative group of erder %) s
lsunwrphlc w0 exactly one of Cog ot &y % Cag 10 L3 ‘this,note that the largest invaciant
faetor must be.a factor-of 90 divisible By ll the prime factors of 90,

THE LINEAR CHARACTERS OF A GOMMUTATIVE GROUP

Let ,u{sﬂ‘a {ZEC bzf= 1} This is an infinile rip. For any inkeger w, the set 1, {C)of
elements of ordet dividing 1 is cyclic of ordc: a dn fack,

(T 2= R0 e < 1) = (L P

“where £ = ez"“"’ s a pridiitive sith root aF 1.
A I'mear ehiaracter (of ]I.lbl chargesei’):of % group Gis 2 homomerphism G — HEY
“The homomarphism a.-» 1 is calted the frivial {orprinéipal) chamq.ren

EXAMPLE 1,59 The gugdratic residue modulo p of an mteger & not- divisible hy pis
I :ifeisssquarein 2/ pZ

defined by
a
(;) = { -1 atherwise,

Clearly, this dcpcnds only or ¢ -modula. p, and if neither & nor & is-divisible by p.
‘then ("5) («“—) 5’) (because-{Z/ pZ)" is cyclic). Therefore ] ( “) (2 pZY* -
{11 =p3{C) iz d chatacter of {7/ pE3©.

The-set of characters of 4 grop G bedomes u group.G ¥ under the additien,
G+ ey = righx'(eh
cdiled the duat group of G. For example, the dual group z" of Z is isomorphic to 1 {C) by
the map j == x{1).
THEOREM 160 Let (F-be o-finite commutative group.

(0 The duaf of G is fsommorphic to G,
{t Thc map G = VY sending an clentent @ of G to the-ghdsacier y = ¥(a) 6£GY

(CORDULARY. 1.55 A finite commititive group i5 eyelic if. for.eachn:> 0, It contains at
mostn e}emenl.s of, order dividing n.

PhoOT. Afier fe Theorein: 1,54 we may suppose that G = C,,l Hew Oy, with my M,
ifn divides ny-and sy with £ 3 f, then & has more that 7 eleinénts: of Grdei dividing i,
Therefore, (kg hypothcsu implics that the #; are rclntwcly prime. Lol gencrate the ith
“factor. Fhen (@, it ) hog ordie oy oot 904 50 genetaies G, =]

EXAMPLE_'J:_,S;G Let F be a Held, The elements of order dividing » in F* are the roots.of
e polynomial X" 1B unique factorization holds in FIX], there are at most 7 of
ihese;and 7o the cotol su:g, shows that every finite subgroup of F* i cyelie,

THEOREM 1.57 A nonzero finitely generited commutative grotip M can be expressed

M 5.l %oee L, 6 CF, {15

for cenain integers my, .. 0, 2 Zand r = 0, Moreover,

) r isuniguely-defonnined by M

(b} then; can bechosemso thatay = 2andniing, ... M ]n,. ained then they aré uniguely
deterrained by M ;

{c) the'n; cap be chosen 1o be powers of pime numbers, snd then they ire eaiquely
deterimined by M,

The:number ¢ is called the rank of M., By r being uniquely determined by M, we mean
that {n any twb dccomposmnns of M of the form (11}, the nuenher of copies of Cog will be
the sami: (and: s:rmlariy for the #1;- in (¥} and {c5). The i integers.ry, ..., its in (b) are called the
invariant factors.of M. Statement {c} says that M can be'expresséd

M mCF;; Ko Cre x Coy e 2 1, Uz
fr cdrtain prime powers p!“ (repetitions of primes dllowed), snd that thie integers F LN

are uniguely derermined by M they are called the efenrentary divisors of M.
PROOF, The first assertion is a.restatement of Thiearem 1,54

{2} For 2 prime: 5 nat dividing any-of the »y;
MIpM 2 (Coof pCos) -2 {Z/ pEY,

and 5o ¢ is the dimension of M/ pM asan B Fp-voclor space.

{be) H god{m ) = 1 then’ C,,, xC,, containg an element of order me, and so

CorxCy 2 Conp, (13y

Use (13} to decompose the Cp, inte products of cyclic groups of prime power otdés. Once
this has been achieved, (137 can be used 1¢ combine factors lo.ackieve dccnmpnsumn asin
(B for cxamplc Ly = HC « Where the producl is ovér the distinct primes among the pr
and ¢; is the highest expunem: for the-prime pr.

In proving Ihé aniqueness staténents in (b) and (e}, we can replace 3 with ftsorsion
subgroup {and so askume r = A1), -A prme 7 will occur ds one-of the pritnes p; in {12)- if
and only M has.un element of ordet g, in which case powill becur exact o times where p%

in other words, (-2 G¥_gnd G = GV
PROOE. The sialerents are 0bvious. for cyelfc groups, opd (G HYY. 22 GY x HY. 5

ASIDE.61 The statement (hat the natwral mdp 6 —'G¥Y is an 1somnrphlsm 18 a special case

of the Poutryagin theorem, For infinite fronps, it s necossay . Bronps her with a.
tepolegy. For exiimple, as we, observed above, 27 2 (). Bachm Z-docs define 2 chargter

;‘ o P (L) —+ (), butthere ars many bomemerphisms g {C} — 1T} not of thts forms, and

40 the-doaf Of;t(IJ is larger thari %, Howtver, these are the-opdy-eonfinnius Funiomorphinng, Tn

general, let G bera comimitative group endiwed with a !ncaily ompact tnpulogy" for which the group:

opcrations are. cununuous, (héri the group 0¥ GFceitintns characters G s (T s 2 nanted

topolopy far which it f2-lacally tompact, and the ‘Pobtryagin’ duadity: thenrem says thiat the naturzl
mzp. & -+ GYY Ty an isomorphiso,

THEOREM 162 {ORTHOGONALITY: RELATIONS) Lot G be-s finite cominiutative gronp.
For any chatacters y and W of G,

i@

atherivisa,
‘T particular.

Gl if y Fs triviad
zaer‘ﬂ“) { 0 othenvise,

PROOT, If 2 =, then x{al¥{a™}) == 1, dnd so the sum.is 1G], Otierwise hiere cxists a
b & G such thae p{bY # {5}, As @ runsover G, s0.156 does ¢b; and'so

Do ea M V=50 petilaty = xw e T,

Bc_cau'se-.x(:‘:)\k(b)‘”"'?é 1, this imptes thit 37,6 x (830" = 0, c

xawah.

COROLLARY 1.63 Foranya G,

Z ()= iG] fa=me
e THEI=) T ‘otfiepvise.
PROOR, Apply the thicorem 10 GV, noting that (GY)Y = G. o

The order of ab

Leta and & be-elemonts of a-group €. 1F . has order sp-and b has order s1; what gan we say
about the orier of 87 The next theorenm stiows that we ban say nothing at alk.

THEOREM 1.64. For nny integersm, i, > L, there-exists a finite group G with elements ¢
and b-such that & fras order m:b s order nt,.and ab has ordery.

PROOF, We shall show that,-for a suitable piime power g, there exist clemtents-# and b
of 8L () such (hat 4, &, and ith have' orders 2m, 2u, anid 2 respectively. As—7 | :s the

unique-clement of erder 2 jn SLa{Faht the images of a. b, ab i SLa(Fe)/d Y will then
have oeders v, A, and ¢ asrequied.

Egllowine. Boutbaki, 1 reautre tocaile compact smaces ta Be o cdorfe




Lét p be & prime number nm-'di\fi'ding Zmnr i Then pisaunitin the finite ving Z}Z:nn ¢F. 18 A grdup G is said (0 hive fiinite exponent if there-exists an az > 0 such thay 0% = o
and so same power of it, § say, is 1'in the ring. This means that 2mnr divides g — 1. As lhe’ for every d in G; ihe smallest.stich p is theh talled tie exponent of G,
group u'q has order g ~ I and is-cyche (see 1.56), there-exist eléments i, v. and w o Fy

() Show that.every group of exponent 2 is commutative.
baving orders V20, and 2r vespeciively. Lot

b Show that, for an odd prime, 7. the. groop-of magrices -

a= (: .1. )';g'ndb:(u . JEI) {eleinents of SLi{Fa 1. ‘g b :
4 LYY 0 1 cflaheek,t
where ¢ has been chasenyso that 00!
wir T = ™ has éxponent p, bt is not commufative. -

The cliasacteristic polynomial of & is (). —uWX —uh), aIld ELY S similar ta diagfi. u"‘) L-T Twer subgroups H and H af agroup G are said 10 e commenmrabfe 7N H’ is.
Therefdre.a has prder 2nt. Similarly & has order 2ir. Tlie- ateix of finite-index in both’ A-and H',"Stivw-thar commensuribiliy is an equivalence relation on

) the subigioups of G.
ah -.(HIH—I -t )
= -1 el o]
ST ke e

148 Show thal'a nopempty finite set’ with an associative binary dperation sadsfying the-

has characteristic polynoniial. capcallation Laws is @ group,

X v 4u™ v Y e (X)X - lU—'jr_ [ LeL G be dset wuh an, alsw:.mlne bmary apu.mum Shu\& IJ'm lflcfl multxplluatlnrl
SR o G e b e bt
'E'xer_cises 1-10 Show thal a-commutative monoid M is 4 fibinaneid of 3 comivutative group if and

oniky-if caneelation holds in M:
i-1 Shiow that the quateinion geoup hag only ond element of order 2, and that i commutes
‘with all ¢lements of . Deduce that {0 is notiscmorphic to Da.and that every subgroip of ity mm o,
Q-is norpal.! . . y o
Hint: The group is construéted fromi M as Q ik construcied from .
1-2 Considér the elements.

0. -1y . _ 8 1
“= (.1 zj)_ b_(——.l wl)
in GL;[?} ‘Show that @ == Land & = |1, but (hat ab has infinite order, and hence thal the
groupi {e. b} {s infinite.

13 Show.that every finite group of cven order contains an element of order 2,

-4 Loty=iy 4t bea partifion af the positive integer .. Use Lagrange's theorem.
10 show that 1 is divisible by T]7y st

1-5 Let N 'be a normal subgroup of G of index . Show that il g € G, then g & N. Give.
-an.example to show:that this may be false when the subgroup is.not normal,

M gon't know whe found this brautiful proof, Apparently the otipingl progl of GLA. Miller is-véry
comphmted e Ma24913,
tus propesty of  is-unusval, v fact; the ondy nonconimutative groups in whiich every subgraup is normsl
ane (e groips of the Form (2,1 A x Bowilh {7 Lhe gualeniion group; 4 2 cammutstive group whose glemems.”
ha\re finits odd ider, and LE commitative proup whose slimenié have arder eIy, See Hall 1459, 12.5.4.

Whien we identify in clement @ of X with the word 4. X béedmes
1 subsel of SX and generates it tie,.no proper hmohoid of
SX contains X, Mareover, the: map X - SX has {be fllowing
universal” propeny: for any ‘map of sets o X -x § from-X taa
monoid 5. there exists a unigue bompmorplitsn §X —+ § taking
the dingraniat ‘rigghit ¢ £ommute:

4rrg

=
4
>

CHAPTER

Free groups

Free G rou pS an d Pl'asentatl O ns: We want torconstruct & grouy FX. .containing X and lmvlng the safne univérsal property as-

3 SX with “monoid Icp]dbcd by “gronp”. Define X t0'be the set consisting of the. symbols
. in X and dlso one additional symbol; denoted a™', for cach a & X' ;thos.
Coxeter Groups S
: RO R -

Lt B be the et of words wsing symbuls [froin X, This bectines s monoid-under juxtaposi-
tion, buf it is not a groug beciuse a1 | not yet the inverse of w, and we can'l ¢ance] Gut the.
bvinits Terms in words of the. folluwmg form:

11 i frequenly uséfat i describe 2 group by giving a set of generators for the group-and & set
of relations forthe generators from which every.other relation.in the group ean be deduced,
For example; Dy, can be described as the groap with generatirs r.y and relations R R A B

M=o =g star=e A word is said to be redseeed if it containg o pairs of the-fonm aa™¥ or:a~'a.-Starting with-

a word i, We can perform a finite seyuence of cadeellations w6 drive at a reduced word
In this chapier, we make, prcc1se what this means, Firsl we need o détive the ftve groupi oh & (pns»lbly cmpl:,fj which will be. called the reduced form tig of w. There may be many
‘set X of generators — this is o gmup genemled by X and with no réfstions, cxc:pl for those different wayi of p;rfam‘nmg the cangellationd, fat example,
implied by the group. axionis. Because inverses cause prableins, we firsi do this foi monoids. Lot ot . -
Recall that » monaid is-a set 5 with-an associative: biriary opecation having an identity cabp e e e cagTl e ra =~ 2T
element ¢, A homomorphism g 5 —+- 5 of monoids is a map such that wf{zh) = a{a)e (i) .
a e — cabit™) sea.

for ail'a.B'e§ and afe} = & — amlike the cise of groups, the sécond condition.is-fot
Automatic. A homomorplism af monpids. preserves al! finite pmducts. We have nnderlingt the paic we are cancélling, Note that the mididle ¢ is vancelted with
diffesent a's; and that differént terms survive in the tive cises (the ca at th. right in the first
l:ancellalmn. ‘and thie 2 ac left in the.second). Nevertheless we ended up with the sayne
angivier, and the riext Tesole says that this alwayd appenis.

t‘d ¥ il

=1

cabl™la~ Eemlog o pabl=ty=!

Freé monoids.

et i = ja.b.e,...} bea{possibly infinile} set of syrnbols. Aword §s:a finlle sequence of PROPOSITION 2.1 Tiere is only one reduced form of2 word.

symhols from X in which repetition-is allowed. For example. PrROOT. ‘We use induetion on the length of the word w, [f w is reduced. fhere is. nothing to

prove, Otherwisc 3 pair of (e fori- agty ohor dy =ty docurs — aShumc thefirst, since lhc
argulncnl iz the same jn huih CUsCE,

aq, acabac. b

are distinet words, T words can be mu.'hi'p]ied'by juxtapositien; fur example, ) Obscrve {hat dny \wo reduced forms of 1 oblainéd by a sequence of cancellalicns in
) ) which-agug " is cancelled first are equil, because the induction. hypothesis can be applicd 10
aagd vaphac = gaagaanhas. ihe (shonier) word-obtained by cancélling agag':

) . ] Mext hh\&l‘\'ﬁ THut any 1wo reduged forms of w ohiained by a sequence of cancellations
“This defines op the set of all words an associative binary operation: The empty sequence iy which auu' ! i cancetled ab sbmc point zu'c_ equal, begause thic result o such a sequence”
is allowed; and. we-denote i by §.-{In the unfortunate case that the symbol §.js. afteady an  of cincellations will it e “’ sctiod i[‘ana ‘1 is cimée]lé’d first. o h
clesment of &, we denole it by a different symbol.} Thed | sefviesk as an idemtity element. Fmaliy. considera rédiced form g olitained by a sequence in which ne cancellation
Write 8X forthe sct ¢f words together with this bmdry eperation. “Then $X isa maniid, zancels aoﬁu'l direcily: Since. auaa“' dues net.remain in we; at least one.of ag vray. =Umust.
“cilled the free mioroid on X. be cancefled at-some point; If the’ pais itself is not cancelled, then the fiest vangellutign
ln\fnlvmg the pair musk look like

iv..ﬁaiﬁﬂaa'l e PP vinelg An“j .Ff.ut_qn



whetg eureriginal paic is undérdingd. But the'wonl obrained after this cancelfadion s the
same’us if-our original pair wéee.zancetled. and 56 we may cancet theoriginal pair instead.
Thus we are back in'the case justproved. o

W say two words o’ ire equivalent, dedoted w1, i they have the same reduced
form, This is an squivalence relution (é_hvious’lx‘j.

PROPOSITION 2.2 Produdts of cquivilfent words.ane equivalent, Lo,

Wty ey omne w3

PrOOR Letwy and vy be the reditced forms of wf and:of v. To obialn the reduced form .

of v, we can lirst-cancel as much as possible in w and v separatély, to obtaln wy ¥a and
the cominue cancelling, “Thus the reduced form of iy the reduced furm of wivg. A
sintiar statement biobds for.w'u’; but (by assumption) the seduced formis of w and-v'cqual
the veduced (s of ' and ', and 58 we obtadi the same resubt in the Two cases. &

Let FX be the set of equivalence classis of words, Bropiosition 2.2 shows.that the hinary
operation.on W'’ defines 2 binary éperation.an FX, which chvionshy wiakes it inta 4 rionoid,
it wlsthas inverses, becaise

tad o gh) (F g b ™y e 1L

Thes FX is a group, called the frée group.on X, To summarize: the elements of FX- are.
“sepresented by woeds i X', twp wards represent the-same element af £ i€ aud only if
they havig the same reduced forms; muliipfication is defined by Juxtaposition; the empty
word represents 1; Inverses are obtained in the abvibuz way. Alernatively, cach clement of
FX I represented by a unigue.reduced \iior_ci:_'multiplic;xtion is défined by juxtaposition and
passage to the wduced foni. ) '

Whin we idéntify o' X with the equivalence class of the (reduced) word a, then X
‘becomes ideatified with 2 subset of F¥.— clearly it gencrates FX. The next proposition
s a precize staternent of the-Eaet that there are no fci_n_tio_r_ns arh't;ing'lhe'-elém_él1ls-qf. ¥ when
regarded ds-elemizmsof FX cxeopt those imposed by the group axioms,

PROPOSITION2.3 For any map of sels azX = G from X toa group G, there existy
unfque hormomorphisty FX — G making the folfoving diagram commate:

a-va

X o——— FX
\

PROOF. Consider a map w: X — (. We extend 1t t6 2 map.of sets X' — G by setting
wla™ ) =alu)~). Befause -G is, in particular. 2 monoid, ¢ extends 1o 2 homemotphism of
monoids SX' ~+ G, This:map will send equivalent words to the same slement of Goand 50
will factor-through FX = $X'/~. The resulting map FX ~ G is a geoup homemorphism,
Trisunique becabise we know it on a-set.of generators for:FX, a

[ W

Generators and relations

Consider a set X and a set £ of words made. up of symbols in X*, Each clement of &
repreents an clement of the free-group FX; and the quotient G of FX by-the normal
subgroup gencrated by these. elements (1.40)is sald 1o have X as penerators’ and R as
relalons {or s 4 set af defining reldtigns). One alsc says that (Y, R) is o presentation for
G, apd denites & by (X | R}

EXAMPLE .7 {a) The dihedral group 2, has generators 5 and defining relations
sE, ST

TSee 2.9 helow for a prook.)

(b} Thiegeneralized quaternion groip Ou, 1’3 3, has generators o, § and retativis®

a2 = I.azﬁ’;z = b hatt =g,

For .= 3 this'is the gréup © of (1.18). I genernl, it has-order 2% {for more enit, see
‘Exercise 2.5), )

€c) Two clemenis & and b in-a groug commute if and only it theii-commutator |, 8) Ef
aba=Vht is §. The free abelian groig on ECRETAIONS A1 ... ey has generators 4y a2, .1 ey
and-relations ) ‘

{ahﬂ_f}r FEF
{dflat G = {51 Eﬁ: .:3',5'4}_‘ Then & = {1} Hizcusie
s'r—.r_szr =5ttt

P gt o B d =5,

For the remaining examples, see Masséy 1967, whichi dontains 4 g account of the
interplay beiween. group Wieory sad lopalegy, Forexample. formany types of opologfeal
spaces, there is an algeritim for obfaining i presentaton Tor tie fandamental group.

{e) The _ftindumen'ini gronp of the open disk-withone point removed is the free group on
ar.where o is any leopuréund the:point (ibid, 11 5,1, )

{1} The fundamental-wroup'of the sphiere with r points remb¥ed has genetators ..., oy
(g) i & loop atound the;fth yioint) and'a single ielation

Tyeede = ],

{2) The.fundamental group of 2 comipdct Riemana surface of genus g has 2¢ generators
1V, g B and w single relution

wip ] v g et =

(ibid. 1V Excreise 5.7).

Striorly.speaking, 1 shovld say e retations a¥ ™ 22602, bt

COROLLARY L5 Every groupifn qub_tic_nt of 4 free group,

REMARK 2.2 The univetsal propénty of ihe map o X —.FX, x 1+, ‘characterizes it:
I ¥7X — F is 4 second map wilk the same universal property, then Lhere §5.9 unifue
isomorphism a2 FX ~» Fosuch hat oot = ¢,

“We recal} the proof; by the universality of . theré.exisis 4 andque' homomorphistm o FX -+

F? sheh thate o f =15 by the universality of ¢, thers. ekists a unigie homemarphism
BiF' s FX sichthat gor =13 now {f oo = ¢ but by the universatity of ¢, idpy is the
uniqie Homomorphism FX - FX suchthatidgy.nt = o, and so-ffoar=Iidpy similarly,

aef=idp,ands0 e mii{‘ are inverse isomorp}ﬁwkat S e e ma ‘ﬁ h S.é.a’ d‘ ex -

f?bﬂ' N guler” o, 5 Cﬁﬁ'?lge qq"fé

“H and mop of sets e X — H seding eack element of.

PROOE. -Choose'a st X of geagrators for & {og., X = &), and Tet F bo the free gtoup
generated by X According to (2,35, the map a ot X —= G cxténds 1o a homomarplism
F G andd the image, being w-subgroup comaining X, must equal &, a

The:free group.on-the set X = {a} is simply the infinite cyclic:group Cys gengrated by
a. but thie free group on wset consisting of two Slements is.already very complicated,
TI'now djsciss, withou! prodt, some irmpartant restls on-free giodps,

THEGREM 2.6 {NIELSEN-SCHREIER} | Subgroups of fres &fuups are frée,

The best priof uses. wpology, and in particular cOvering spaces——see Serre 1950 or
Ronmuy [995; Theotem { 1.4, } )

Two free groups FX and FY. yre isomorphic i and only if X-and ¥ havé the samme
cardinality. Thus we can define. the rank of a-free group G to be the cardinality of any free
generating ser (subset X' of G for which the homomorphism F¥ —» &- given by (2.3) i
an isimorphisth). Let A be u finitely gencrated subgroup of - free group . Then there.
Isun slgorithm for consirusting from eny finite set-of penerutors for & « free finite sot of
generators, I G hus firiite rank'n anud (6 H) = § <00, then H is free:of tank

Af =i+,

Iy patticolar, & may have rank preater than that of F(or even trifinite rank?). For praofs,

- gee Rotman 1995, Chapter 11,and Hafl 1959, Chapter7,

! Nielsen (1921) proved This.for finilely generated bubigroups, and in faet gave an algarithe fof deciding
whetliera word e in the subgtoup; Schrcier {1927} proved he geteraf ease;. © ’
aFar_mm.mi}:r]e. the commutatix sutigroup of the frec group 66 twa gencmioes ha Jnfalte rank,

PROPOSITION'2.8 Let G be the group defined by the |

sentation (X, K). For any group
Rt 1 (in the phvious sénse?), there.
eXisls 4 unigue howomophism. G — H making the following diagram commte:

, HF=G
]

/
Me--- @

PrOCF. From ilie universal property of froe. groups (2.3}, we know that o extends foa
homamorphisey X —. 1, which we again denote &. Let R be the fmage of R o FX. By
assumption 1R ¢ Kee{e), andiheréfore the normak subgroup iV genersted by tRis-contained
in Ker(a). By the briversal property of quotients {see 1,43, & factors through FX/N = G,
This proves.the existence, and the usiqueness Follass from.the fad that we knidhwthe map on
2 set of genarators for X. ) o o

EXAMPLE 2.9 LotG = {a.h fa®, b, baba), We prove that G is isomorphic (0. the dikedral
group-Dy.(see 1.17). Beeause the clemeénts 7,5'e Dy silishy these refddions; the frap

{g:b)— Dy, arsr, bivs

extends uriquely to 2 homomorphism G=» Dy, This homgriorphism is sittfective because
rand 5 generate Dy, The equalities

=1, =l ba=a"h
inply that each.element of G is represented by ooe of the fdliu_\ving"e'_lcm_ents,_
L™ froab g 1h,

ahid 50 4G [ <20t = [Dy} Therefore the homomorphism 3 bijective (and these symbols
represent distinet elements of G ' ’
-SimiTarly, _
{o.b|a® b (abY"y = By

byars sphrs o,

EXAMPLE2.10 {2) Let G = {x,y } 2™, »"} wherd m.jis 1, Then x has orderm, i has
ardert, and ¥y has infinite order in G. To sed this, reécall that for ny integers m oz » 1.
there exists a'group H with elements « and b such ihat 4, &, and ab-have orders.m, n,.and r
tespectivily (Theorem 1:64), According.to £2.9), there exists a homomerphism &: G — B
siehi that o (%) = g and o) = b, The order of certainly divides »i, and the fact that a{x)
has prdex #: shows that x has order éxietly /i, Similarly, y has ordee r. As a{xy) = ab,
the element xy must have orderat leist 2 As this is tie for 5 r > 1. thie clement X has
infiite order, ' _

{b) Let G == {x, 3 | x™,3% (x3¥} where ni,m,p > 1. There exists. 3. liomomorphism
from (. to the group.in {1.64) sending c.and p ta ¢ and b, which shovws.that x, 3, and xy

A h mlemenr af. B farrmeen be s sleiaer of B % il s asn



have orders m; &, and rin G- The group G may. be finite or.infinite, depending on the iriple
{mn,r}, These groups secur naturally-ay subgroups of index 2 in gertain symmetry groups
— see the Wikipedia {Triangle group). )

{e) Lot G = SLaf@) ), and let § ang T he ihe clethents of G represented by thie-
matrices-(§ 5} and (6 E } Then & and 87 generatd G, and §* =1 = (§T)? (see Theorem

2:32.0f my course. nates on.madular farms). Tt is knawn that this is.a fill set af relations:

For-§-and ST ia G, and'sa every.group generated by an element of uider 2 and an element
of prder 3 is a'guetient of G, Most finite simple groips of Lie 1ype, ahd all hur theie of the
sporadic simple grovgs, fall into this claye.

Finitely presented groups

A group is said to be finitely presented if it admits 2 presentation- (X, R} with both X and R

finite.

BXAMPLEZ.{') Catisider a finite.group.G.. Let X = G, and let R be the set'6f words
labe™" |ab=¢in G

§ claimithat (X, R) 3 a presentation of G, and se Gis ﬁniiely_ pre.-;emed.. Ll ' =
“The extension of @ v+ a: X =0 10 FX sends-each glement of R to 1, and thersfore

dcﬁms a homomorphism G — G, which-Is dbvigusly surjective. But every element af’

G*is reprasented by an elefient 6 X, ind.50 16" € |G]. Therefore the hunomarphism is
bijective,

Alhongh it Is.easy 10 d{:ﬁnc-a‘_'gmup'b.y_zl finite presentation, caiculating the properties.
ofihe group can be very difficult — note thal we are defining. (he group, which may bequite’
sruall, as the guottent of & huge fTée group by a huge subgroup. Tlist sonie negative resuirs.

THE. WORD PROBLEM

Let (3 be thie group defined by a fnitg presentadion (X, R). The word problem for G asks.
whether thefe exists an. algofithim (decision procedure) for deciding whether a word:on X
‘represents. 1 in G, The answer s negative: Novikov and. Boone showed that-there exist
finitely presented groups & for which no' such algorithm exists. OF course; there do exist
vilier grotps for whick there s an algorithn.

‘The same ideas l2ad 1o the following r_esult: thiere does nn_r:e_xisl’_an_:l_]gon'thm that will
delermiine for.an arbitrary finite présentition whether of ot Ibe torresponding provp is
trivial, finite, abelian, sotvable, nilpotent, simple; lorsion, torsion-frec, free; or has a sotvable
word problem. )

‘See-Ratman 1995, Chaptes 12, for pioafs of these statements,

THE BURNSIDE PROBLEM:

Recall thata group is said.lo have expanent¢ if g° = L for il g & G 'and # 13 the smallest
nitural nuinber-with this praperty.. It is easy 1o write down examples of !u!"u:le - pronps.
generated by a finite number of efemenls.of [ arder {see Mxercise. -2 or Examplc 2140,
but does there exist sucha group.with finite exponent? (Burnside problem), In 1968, Adjan
and Novikev showed the answer is yes: \here. da gxist infinile Anilely. genérated groups of
finite exponent, ) ) )

{b) Ifn{s,t] = oo, then the Coxeler systemis (G, {5, 1}) where' G = {s.r | ?,:‘%-A&
cording ta {2, 10{a)), 5 ik ¢ cach have order.2, dhd $1 has-infinite order,

"3.14 Let ¥ =R" endawed with (he standard pasitive dchn{tu.symrnctric' bilineur form
(Gidysisar (Fusrsa) = 350
A reflection is wlinear map s ¥ — ¥ sending some nondere veotor a to —a and fiking the

poinis of the hyperplane Hy erthogorial to o We write 5 for thg rellection-defined by e; it
i% givenby the leimula.

because fhis is cetininly corredt forv = & and for & Hy.and lience (by lincarity) oa ihe
wholeof ¥ = (o} & Hy. & finite refléction groug 15 a finite group penévated by reflections.
For such a group G, it fs-possible to choose:s set 5 of generating reflections for which (G, 5)
is & Coxeter system (Humphreys 1950, 1.9). Thus, the finite réflection groups areali Coxeter
proups (infact, they are precisely the finite Coxeter groups, ibid., 6.4).

215 Lét 8, act on RY by permuting the coordinates,

G’(ﬁl,:, werfln) =g [pe- e Ty )

The trngpasition {77 ) ineichanging 7 and. f, sénds e vector

i i
@ (e, 00l B =100

tp its negative, and Jeaves:the puints of the hyperpline

i -
Hy ,.-.-(a;,...,q,—,,,(,a;.-,..,a,,)
fixed, Thercfi:-re._ (i} is a reflection, As Sy i generated by ihe'-{ranspositions, Ahis shows

that it ts 2 finite reflection group (hence also a Coxcter group).

THE STRUCTURE OF COXETER.GROUPS.

‘THEOREM 2,16 Lit (G, 51 be the the Coxetcr systemidofingd by dmap m: 5 R 8~ Mi
{oat satisfying (14},

(a} The natural map S — G s injéctive:
(b} Enchs € has order2in G.
(¢) Forcach s # ¢ in 8. st has ordermis.t} in G,

Prizor;. Note tha the order of 2 is | or 2, and the order of sr divides m{s,r}, and so the
‘theorem says that-the elements of § reain distinctin (7 and that cach s and cach st hasthe
largest-possible:order.

if 5 fns.ouily a single elemenit, lhén G == Cy {see. 2.1 2), and so.the sla:cm:.nls are ubivicus.
Otherwise, let s and ¢ be distinct elements of 5, and let G' =:{s,1 | 52,2 (s} ”}
The map 5 - G sending -5 10 5,.7 4o ¢, and all ather elements of § 10 1 extends (o a
hamemarphism.G -+ 67, We know that x and 7 are distinet elements of onder 2iin:G’ and
that 57 has grder /i (g.r}in G' {see-2.13), and it follows thal the-same iy, fuein G, a

(X{R).

saisfying (14); then G =

-y 5& 8, such that o6, has order 5. £).

‘THE RESTRICTED BURNSIDE PROBLEM

The Burnside group of exponent e.on r generalors By, é)is the quatient of the frex group
on r generators by the subgroup generated by all il powers, The Bumside problem asked
whethier H{r, e) is finite, tnd it is Known (6 be infinite except some smali values of r and &,
The restricted Bumside problem ‘adks whether B(r,e) hos only hinilely maiy finite guuolichrs;
etquivalently, it asks. whelher there is one-Gite. quotiont oF B(r,e} havidg all sther finits
quntncn[s A5 quolients. “The classitication of the finite siniplé groups (see p. 52} showed that
in order prove that Bir,e) abways-has only finitely. many finite-quoticnts, it-suffices to: prove
it for e 2dual 1o°a prime power. This was showi by Efir Zelmanov in 1989 after éarlier work
of Kastrikin, See Felt 1995,

To DD-COX BTER ALGORITHM

There are smye yuils inniveuins lm‘lkulb finite presenlutions that ate knowe (o defive quite
seall proups: but lor which this is very ‘difficult.to prove. The staindard approach to these
guestions is 1o use the Todd-Coxeter algorithm (see Chapter 4 befow),

We shall develop variogs methods for ricognizing groups (rom théir presestations (see
also tHe exergised). ) o

Coxeter groups

A Coxeter system is a pait (§. ) consisting of 2 group & anda sel-of generators § for G
subject only to relations of the form _(3: yAlat o | where

Cwriss) = lalls _
misd) = 2 {14}
mig ) = mifs)

Wheii nG relation occurs betweeri 5 and £, we set m{s,#).= oc, Thus a Coxcter system is
defined by a set § and a-mapping

S WS~ N oo,
{§'1 R) where
£ = { (s Y {nls.t) < oo},

The Coxetér groups e those thar arise ds par of o Coxeter syiten, The cardindlity of 5 is
colled ihe ranek of the Coxeter system.

EXAMPLES

2.12 Up to isemorphism, the only Coaxetersystem of rank 1 is (€, 15}).

2.13 The-Coxeter systems of tank 2 are.indexed by m (5,1} 2 2.

{2} IF mife,£) i an integer #, then he Coxeté kystem s {G, {51 }) where

G =t | S0 a0
According to (2. ‘J), G D,.- In pa,nicu'la:. H # tand st has ordeen.

REMARK 2.17 Let V be the Revoétor: space with basis a family (ey)ses iidoxed by §_Tiie,
standard proof of Theorem 2. 16-défines a geomefry on ¥ for-which there exst “reflections™
According to (2.8), the.map & ++ o, extends
10 hommgmaoriism of group G — GL{¥ ). Thig proves the, theorem, and it realizes G as a

gioup of adtomorphisms of 2 “geometry™. See Humghreys 1990, Cliaprer 5, or v3.02 of
Ihese ndtes.

Exercises

2-1 Lit Dy= {a.bfa® ;5% abub) bethe 1tk dibedral group. 16 # is odd, prove that Dy, =
{a®} x {2, b}, dnil henee that Do & &3 X D,

2-2 Prove thar the groap with seneraios &y...

oty and relations [ag.ap] = 1,§ # jilsthe
free. abelian group.on ay.... )

. [Hint Use universal propertiss.|

2-3 Lota and & be clements of an atbitrary free group F) Brover

(a} If¢” = p" witliy > L, thena = b.
{83 IF a™h® = bR with min yé 0, thenab == b,
{c} If: the equaticin X" = & .has a solution x for avery i, then a=1

2-4 Let F, denote thie free proup-on 4 penerators, Prove:

ta) I <<, then Fy i5 isomorphic 1o both o sabgroup anilz quatient group of Fs.
{b) Prove that £ X Fy is not a free.group,
{ch ‘Prove that the centre Z{Fy) = | provided n=

25 Prove.tiat Oy, (see-2 ?b) has aunique-subgroup of erder 2, which is Z (Q }. Prove
that O,/ Z¢ Onlis twmorpluc T3] I),_u-—~

2:6 (2 Prove thiat o, b [a®, 57 {aB)") = Dy.(of. 29,
{b) Prove.that G = {a.& | a*.abab} is an infinite group. (This is usuadly known as the
intisiise dihedral group.) o )

27 Let G = daboe | ad e acac™t b beT V) Prove that & is thie trivial
group {1), {Hint: Expand {aba™!)? = (hed™1)% ]

2-8 Let I7-be the frec group on the set {xiv} andlet 6= . with generator 2 # 1. Let e
be the homomarphisin & — (7 such that @{x) = a-= a{y}. Find a minimal generating set
for the Kemnel ofar, Is the kemiel z iTee gronp?

209 Lt G =5 1067 =_,rs}_.' Froverthal the-elemen
=Ty s

ts in'tlie kemel of every map from & to a finite group,



Coxeier.came 1o Camhridge and gavé ¥ Jacture [y which he stated af problen foz which he gave.
Profs fof selected exaraples, dnd he asked fors ubitied proof. 11 the lecture raom thinking
A3 1 wiis walking theay gh Cambridie, suddenly the fdea hicme; et it hit v white T was in
she midgfe of the roud, When the-ides hit me ! stopped and a farge tratk ean die ., Sp1
pretended that Caxeter had caleilated e liLﬁ'icuItny thix prcblcrd'é&j;if_ﬁiﬂ:'iy ljifg.lllé_'k.ﬁ_c'\af that
Toeould get the sodution jost in e it of tie rivd. ... Bvor sifes, Tve called that theorem,
“the smifeder séEapii™, Due eonsequenes of §615 10l in 4 prong if ® = b5 = S {atbrey™, then
‘\:ﬁ mn

=1

Jabin Cunurny, Math. Inlelligencer 23 {2008, . 2, pp, ¥<8,

CHAPTER

Automorphisms and Extensions

Automorphisms of groups.

An automorphiser of 2 group G i5'an {somorphism: of e group with itsélf, The sét
Au(G) of automorphisms of G- becomes a gronp under composition; the composite of two
-aptomorjihisms 5. again an’ dutornombism; composition of meps i always associative: (see
{51, 7 9); the iemtity map g+ g s an identity element; an autororpbism is a hijsction, and
thersfore has an inverse, which ig:again an dutomosphism,
For g &G, the mapi; “eonjugation by g™
e
X grpTt i G0

is an automorphisn of G, An sulomorphism of this foim is called an inrer sutamorplisns.
7nd the femaning antomorphisms are said to'bé enter,
‘Note:that
eMx (gAY = glhrh ™ g ™Y, Lew il = (4 oigix),

and so the mip g+ ig} G~ Aut(G) is 2 homommorphisro. Its image is denoied by Inn{G).
-I1s kervel s thé centre of G,

26 ={geGlpr=xgalx =G,
and sa vie obtain from 1,45} an isomorphism
G/ Z{G} - Inn(G).
In act, Tan{(?} is a.normal subgroup of An{G): farg € G and e € Ait{G).
(woig oa ™ Wy) = alg o™t (x) g7 = wig) x-alg) ™! =haggylx),
BXAMPLE 3.t () fat G = ?*‘,,."'I"hc'aummorphisms of G 45 2. commutative. group are fust
The automorphisms of G as a veckr spuce.over Fy; thits AWt(G) =Gy {¥p), Because & is

conpmulative, afl noatrivial automiorphismis.of ¢ are ouer,
b} As-aparticular case of {a). we sep that

B ed T R

(e} Since the cefitre of the-gaaternion group O is (a2}, we have that
Inn{ ) =~ 3 /{a?) = C2 X Cs..
Tn fact, Aut(Q) = Sy Seé Bxerciss 3:4,

ASIDE 3.2 Letebean automorphism of o group i, If & dxinner. then It extends to every group G
comaining /f as.a Subgroup. The converse is also e (Schupp 1987},

COMPLETE GROUPS
DEFINITION 3.3 A group G is complete if the map g f:g:_G ~ Au{G] is 50 fsomor
phism,

Thus, & grolp G s camplete i€ and only if (2} the centre Z{G) of G is trivial, a6d (bY
every automorphism.of & isinner,

EXAMPLE 3.4 () Forn'# 2,6, 5, is complete, Thc-__group Sz fs commatative and hence.
fails ta); Aur{Sg)/ (S5} 2 Cz.and hence Sefails (B} See Rotman: 1995, Theorems 7.5,

7.0,

W IFG isa simple nonconmtative group, then Aul(G) is.compleiz, Sve Ronnas 1905,
Theoreri 7.14,

Accordjng 1o Exercise 3-3,GLy (Fy) #2853, and $6 the nonisomophic grougs. Gy X €y

~and 53 have Bsomorphic aurdmerphism groups.

AUTOMORPHISMS OF CYCLIE GROUPS

LetGbea cyelic groiip-of order 1, say G = {a}. Let#n be un'integes = 1. The snullest

mukbtiple-of i divisible by # is.m - ﬁii&ﬂ"ﬁ ‘Therefare, ™ has onder Eg{;_—ﬁ. and sv-the

‘gencrators of G- are exactly the elements g7 withi gediin;n) = 1, An antomerplisme of G

must send a 1o another genieritor.of G. dnd 80 aa} = a™ for sorme m relativély printeto .
Themiup e e+ ity defives an isomerphism.

A(CyY - (Z/nE)*

where:
_ {&/82Y* = {units i thering B/n 2} = {m—+n2 | ged{mn} =1},

This isomorphism is-indeptrident of the choice.of 2 gencrator a-for G fafa) =-a™, then
for any oiher clément & = 4 of &,

“(b) = cé(al} :“(a)f -=arru' s r‘ai)m =UJ)"".

Tt remains to determine (Z/n2)%. If o= P:‘ s i 15 the factorizition of i ino o,
product of powers.of distinet primes, then

ALY m_zfp;‘-Zx---x.Z[p;3‘z,_ mmad n <+ {pr-mod p7..)

by the Chinese remainder theorem, This js andsomorphism ol riags; dnd-so



Turemain ta considér the case.n = p*; p prime.

Suppose tirst that pis odd. The set {1, p"— 1} is-a compléte.set of repr lives
for Z/ p"E, and -15 of these e_Iemems-a_r'e'_divi_sibl'e.hy 2 Hente (_E}’-p’,@';}_" hag order p* —
’;—r =pr¥{p— 1), Th:homamiorphistm

(&) 97Ty (B pLY

-1s sutjective with kernel of order’ p! =1 and we know thay (27 pEy* is Lyc!;c. Letae
LRI map.ta gLnaratur of (Z/pE)*. Then a# L nnd al" again maps to &
generator of {Z/ pZy©.. Therefare {Z/ prZY* comains an-lement. ; ar of opder p—-l
" Using the binomial theurem, orie finds that 1 4-p has arder i (.»f,.fp"Z)" Therefore
(& PRE cycllc with gcneratora; {14 p) {ef. 1130, p.. 263, and every element can b
writtet] udiquely in thé form

Pal4 ), 0gi<p-l, Osfepl
- On the other hand, . .
R =LA N =050

is nol cyelic.

SuMMARY 3.5 (a) Fora'cyclic group of & of order s, Ant{G ) = (Z/rE)*. The adtomor-
-phism of & corcesponding o [s} € (Z/nE)¥ sends an elemenl e of & to 4™, )

by If = pi' -~ p{* is the factorization.of u inle 4 produet of powers-of distinet-primes
pi, then '

(BB o (] pT EY s B/ pBEYY, e mod s o> (ormod p™t L),

{c) Fdr a prime. p,
> Clputypr-t PO,
(BIp A 2 40, =2
CoX Cyre p=2722,

Characteristic suligroups

DEFINITION 3.6 & charnelerisiic subgroup of a group G Is a-subgroup H sdch that
a{H) = H for.all autemorphisms ¢ of .

The same argument as 5 (1.32) shows that it suffices ta cheek; dhat alHYCH f(_ur all
- Aut{G). Thus, a subgroup H of G is normal If it is stable under wlf fmrer auomarphisms
of G; andit is characteristic if it stable under ol anomorphisns, Tn particular, a characieristic
subgroup is notinal: ) o )

REMARK 3.7 {2) Consider a group' G and 2 normal SUEgmup N An inner automorphism

of G resiricls to an’ autonierphism of ¥, which may be puter {for aw example, sée 3.16
'below) Thus a normai subgmup of k4 need nal he a nomla] suhgroup of G. Huwever a

ofa clmr.lctcnstlc sub_gmup.m a characteristic sub_grou_p_

{b) The aliernating subgroup Ay is 2 nermal subgroup of S, (because it has index 2),
and Cy ={{12)} maps isomarphically onto S,,M,‘ Therefore 5y, = Ay 2.

(c) The quaternion group can not’ be. wriltén a2 2 semtdmcct prodoet in any ) nonlrwml
fashion (see Bxercise 311 o

{dy A cyclic group of order p%, p-prime, is Tt a-semidireet ptoduet (becavse it Has only
one subgroup of order pl.

() Lét G = GL;;(F). Let & be the subgroup of upper triangular matrices i G.T the
subgmup of diagonal matnccs iu 7, and {7 the subgroup of upper tiangular Tmatrices with
all-their diagonal coefficients equal to 1. Thus, when n=32,

e ® A% 0 1 o#
2={(; 2} ={G I} e=1G )
Then, U is-a fokmal subgroup of 8, UT = B, and ¥ M7 ={1}, Therelore.
B=U=T.

Noie that, when it 2 2, thé action of T-an { is not tivial, for example,

(3 )( 0 2 )=( ),

“and 5a B-ignot the diret productof I and U,
N, we obtain 2 riple

NG T AUl
“and that the triplc_dct_ermines.G, “We now-prove that every triple { ¥, 26 congisting of twer
groaps ¥ and. @ and’a homomorphism 8702 — Aut{ ') arises from a semidirect produet.
Asgsel, Jet G = N 0, and define
g’ ¢y = 0 Bl g™

PROPOSITION 3.0 The composition Jaw above niakes G- into & groiip, in fact, the semidi-
reci-product of N and Q.
Proor. Wrile O for fHg)in), so that the cemposition law becotues

(g’ o) = (-t g},

{ e
01

We have seen that, from a semidirect product § =

“Then
g} = (r, g {(n' g )N ")
and 50 the associative Jaw holds, Bécause (1) = 1 and RlgH{ D=1, .

{1, 1360, ) = o) = ()t LR

and 5o (1, 1) is an dentity etement, Next

A qh (7 g Mg = Tt IR gy

(g g = (1) =0 e g
and 5o (47 w Y7V} is an inverse for (x,g). Thus G is @ gronp. and 1t is cbvious that
N4, Ng = {}‘.andNr‘sQ—{I} and g0 G=Nx(, Maremer,v.hanananm

regarded as subgroups of G, the sction of-Q-on N is that given by & o

{b) The centre Z(G).af G is.a chameteristic subgroup, begause
rg=graigef =% aizle(g) = ui{glaz)all g's G, :

and.as g.runs-over G, u{g) alse runs over . Expect subgroups willh a general group-
thearetic definition to-be charactenstlc

(c} If H isthe only. subgmup Gf G of order pt; then it must be characteristic, because.
a{H}isagain a subpronp of G of arder 1.

{d) Every subgroup of a commutative group is normal but not necessarily character-
istic, Fot example, avery subspace of dimension | in F” is-subgroup of ?z fut it js ot
charac:emtic beciuse it is not stable under AuF 2) = Gth'Fp) '

Semidirect producls

Let N be .1 normal sub;:roup ol G E.:ch element g of G defines an automorphism of N
s gl and thls defines.a hom(:m:}rphlsm
GG AN, g gV,

Ifthere exists a subgroup-Q of G sachthat G — G/ NV miaps @ isbinorphicaliy onto G/X,
“theti Iclalm that we can Teconstract G from N, @, .and the festriction of  to @, Iniléed, an
element-g of G- cin be writter uniquely in the form’
PR
g=ng. HEN, ge

— g must be the Gnigue sleaient of & magping 10 gN € G/N, and 1 mustbe gg~*. Thus,

we have 2 one-to-one correspondence of sels
o= b Hd
99 7 = fhArdEm)

= Gigulny) =nlgn'y ™ g =a-0(g¥n'y- 44’

G o % 0,

I['g = ng and-g’ = n'g’, then
DERNITION 3.8 A group G is a semidivect groduct of Uls subgroups N anil O+ N is

nornal and the homomorphism G — G/ ihduces an isomorphism 0 — G/A,

Bquivalently, & is-a semidireet produst of subgroup & and- ift

NaG;  NO=Gi NnQ={i. {15
Note that § need nat-bea nonmnal subgrditp of G, When 7 15 the semidirect product of
sibgroaps N and O we writd G = N 2 G {or N %y  where 820 = AQUN) gives the

‘action of @ ont ¥ by inher automorphisms).
EXAMELEZY ()b Dpo w2 210t 0y = {r} and O = {s): then
Dy = {r)ng {s)

where §(0¢F) = r7 {see 1A7)

= CprupCa

¢—>

TEXAMPLIES
311 A.growp of order 17, Lei § be the (unique) vontrivial homomaorphistn
Cy —Au{Cy) =~'Cy,
namely, that sending & generator of Cy to the map a = %, Then 6 ¥ Cg xg Ca s 2

noncominutative group of order. 12, not isomiorphic 16 A4, Ifiwe denote the generators of C:
and.Cy by a-anid &then damd b generate G; and have the defining relations

=1, =1, '5:15“1 = g2,

312 Diroct prodicts. The bijection of sets
'(ﬁ.q'] g N Q — N
ts an isomurphism of groups if and only if.# is the trivial homomorphism @ — Aut(A), ie.,

figini=nloralge J.n €N,

A3 Groups of order 6. Both.S52 and g are semidirect products of €3 by Gz -—-—lhey
correspond 1o the Lwe distinet homemorphisms o' (.2 = Aut{(’s}.

3.14 Groups of order p* (eloment of order z2). Let ¥ = {a} be cychic of order p2,
and Jet = (&) bewcyslic of order. p, where p is an odd prime. Then Aut Y 7 Ep1 < Cp
tsee 3.3) and Cp is. generied by o a w2t (nots that e {a} = altie, .} Define

Fe Auri by & v» . The group 68N g -has generdtors &, b and defining relations

7 =1, pE=1, bah‘l-zal""f’.

{t is a.noncommutative group-af order p?, and possesses an element of order p2.

3.15 Groups of order. p* (oo element of order p*), Let N == {o.b} bé the: froduct of
o cyclic proups {#) and {h}-of order piand let @ = e} bea cyelic group of order p.
Dcfmc B — AuN ) iobe thé hymdmitphissuch that.

HehY @) =ab. OBy =

{if we regard N-as the addilive graup ¥ =.E"},-_\gilh a andb the standard basig elements, then
B{cY is the automarphisin of N defined by the miatrix (‘1 ?) Y'The group & H ¥y Ot
a group of u_r:_le;_p"_. with generators @.f.c. upd._dcﬁninj._’, I_ﬂqiinns_

af = bp =ef =, ah= _t'gr:‘"].. Eb.ﬂ] =|= l‘h&}.’

Becduse b7 1, the middle equality. shaves that the group is net commutative, When p is
odd, all elements except | have order-p. When pra= 2, G 5 D, which does have.an'clemenl
of order 23. Nole that this shows.that a grolip can have quite dlffercni representativng as a
semidirect product:

34y . . .
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For an odd primeé p, a noneommtative group of order p? is somorphic to'the:group in
(3.14Y'if it has an element of order _p?-an-.l o 1h=":g'r0u_p in(3, 15}if it doesn’t (sée Exerdise
4-5), In partieular: up to isomorphism, there af¢ éxaictly tivo poncammulative groups of prder
3. . X
P

3,16 Making outer automorphisms innes. Let o.be an agtofmorghistm possibiy otter, o &
group N Wecan realize N a3 ¢ narmiad subgroup ofa group G io such 2 way that «f becomes
the resteiction 1 A of an-faner atiomorphisi, of . To sec s, Jet §: 0y, — Aut{N) e the
horomerphisn sending a genemior @ of Coe to s & AN}, and let G = ¥ sy Cog, The
clement g = {1,a) of & hasthe properiy that g, 1p™" = (afr), 1} tor il n & N,
CRITERIA FOR SEMIDIRECT PRUDUCTS TO BE ISOMORBHIC

Tt will be useful tn have criterid for when two triples (¥, 0. 6) and (N, 0.8 defermine
isomerplie groups. )

LEMMA 3.17 If there exises an o € Am{N) such that
Flg)=acdlgloa™. algeQ,

thien tire map
gy {e(n}qu ¥ g G~ N sige @

i8 un fsomorphism.
PROOF. For (u.q) & N 99 2, letyin,q) = (eefn). g). Then
Yoyl g') = (ln), @) (el ')
= (@ (0 -0t gy
= {afn)- o llg) oo™ Yaln'Y.q¢)
= {aln} -2 (O(g)n') aq'),

and

Pl @) N =yl 1) )0d
={&(n) o (Mgjtn')) .qq')-

Thérefore  is 2 homomorphism. The map
. q) o= (e (), g N g O e Nstg @
is-alse o homomorphism, nnd 445 inverse to ¥+ and so both are isomorphisms. =]
LeMa 3.18 I 0= 0o with a-& AuttQ), then the smap
(. gfer (na(gh): N wg @ = N %50 0
i aiy isomorphisen,

PROGE Routing verificatin,, n

< > )
{8} there exists 2-subyroup @7 < G such that 7 induces n isomorphism O = &% of
(b} there.exists a homomdrphism &: @ — G such that 7¢ 0 5 = id,

In-general, an extension will not.split, For example.
15 Cp-n Cpz s Cp o |
doesn't split. If @ s the quatesnion £roup and A is ts centre, then
1+ N 0 Q7N 1 an

doesti’t split if it did, O would be commurativé because: N and /N aré commitative and

§ is trivial).
THEOREM 3,21 (SCHUR-ZASSENHAUS) An extension of fnite groups of refatively. prime
order is spiit

‘PROOF. Rotman 1993, 7.41. o

PROPOSITION 3.22 An extension (16} splits if M is complete, In fact, G is then the Hirect
product of N with the contrlizer of ¥ it O,

Co(N) i&'_’{g- &G |gn=ngalln & NT,
PROOFR: Lot & = Cg{N}. Weshall cheek that ¥ and A stisfy the conditions of Broposi-
tion 1.493,
Ohserve first that, for any & & Goat e gitg = NV -+ N T5.an antomorphism of ¥, and
(becaiise ¥ 1y complete), it must be-the inner automorphism defined by an cloment ¥ of N
thus

gug™ = pay BHEN-E .

This équation shows that Ty & # . and hencé g = y(y~ g} & N4, Since g was atbitrary,

“w bave shown that 7 = NH.

Nextnite that every clement of ¥ 11 A isin the centre of /¥, which (becanse N s,

womplete) is trivial; henee N1 H = |,
Finully, for any element g = nh € G,

EHET = Rt I s T =
{recall that every element of & commites vith every clement 'of M), Therefore H is normal
inf. o
An extension
ParN s G s O3
gives rise 10°a homomdrphism 8% G -~ Autt ¥}, namely,
(g} = gng™t.

Let § & G map to ¢ in . then the imtage of 8°@) In Aut( N 3/ Inn{N} depends only on g
therefore we get a homothorphism.

by N,

LEMMA 310 7 0 js cyelicand the subgroup B{QY of Am(N) is configate to 0}, then.

Ny Qe W ag .
Proow Leta generate - By assumption, there 'existéan a’ & @ and ang & Aut{ ¥) such
that o
ey )

“The element #'{a) generates 8*(), did so we.can choose 2’ to gencrate Q. saya’ =a' with

F felatively prime to the ordecof £, Now the map (g} =+ (lnd, qby i an isGmoephism
Ny @ — N up . ) o

SUMMARY 320 Let G be 2 group with subgroups ) and Ha such thal G = HiH and
H\ 5 By = (¢}, so thut eich element g of G .can be witter uniguely 45 g = f1phy with
Ky ey aod iy € Hy. ' S
{a} 1€ Hy and Fy are boll normal, then, G is the direct product of My and Hy, G =
H) % Hz (1,51 _
th) If Hy is nommal in'G, then G is the semidirect product of Hy and Hz. G = Hy 3 H;
WNpde) - '
{2) I neithér Ky nor F is cormal, then G is the Zappi-Szép (or knit) product.of Ay and

Hy {see wikipedia), Mp{, *l;}l g f‘ﬂ: L{( ;m e @M ﬁ‘dh. 2 ..{- 3 /j-
Extensions of groups Exten fon. phs fom 8 mof ea. gy
A sequence of groups and homomerphisms G sounp Etepsion v5 mot l'fhgﬂbﬁ

1o NS Ga 0 {16)

is exactif 1 is injoctive, 7 is surjective, and Ker(n] 2= Tmfi), Thus: (N) is woommal subgroup
of  (isomorphic by.tlo N) snd Gfi(NY Ey €. We often jdentify & swith the subgroup
1N} of G ind Q with-the quotient G/, o
Ani gxdgt sequence {16) is also calfed anextension of Q by N} An tutenision is ééntral
Ny Z(G). For cxmp'?:lfiﬁﬁdilecl product V. xp {F gives ise.tn an extension of
42 @ i we know A GAL
Hove do we obtain @1

TN 3Nty O 01,

which is central-if and only if & is the trivial homemorphisme.
Twa extensions of O by N are said to be ixemarphiic if there exisls a commutative

dirgiam i
1-—~4J|\Jf~_-')jm_,_-g — By H;af-,*l
. Y
I — ¥ — & —s g — 1. Ea".fﬂ‘\f;bﬂ [_'.i

An exiension of O by N, Peverfe °f -iﬂufr'et,'i

=N L Q> I ~ Eﬂm.ﬁbﬂ
isgaid v bespilitif it is.isomorphic to the extension defined by a semidineet product . 1y Q P . b w
Equivalent conditions: feddriy]

FThis is Bowbaki's termdalogy {Alpbe, T §61; e authars call (16} am extension of ¥ by 0.

>

Thismap 8 dépends anly on the isomdiphism class of the extension, and-we write Ext* (0. M)y

“for the set of somatphism classes of extensions with a given 4; These sets have been exten-

sively studied.

When @ and M are-commutative, thete is 2 commutative group striéture an the -
set Ext"{Q. N}y, Mareovey, endomorphisms of @ and N act s endomorphisms on
Ex\'{G. N}y, In particolr, multiplication by.m on  or ¥ induces multiplication by
#r on Ext (@, N 1. Theis, if ¢.and ¥ are killed by arand o respectively, then Ext! (0, N,
is killed by 1 and by &, and henee by gedth, n), This.proves-the Sehur-Zasseshaus theurem

ity cage. Jof_ o Hw}. 1 a,ny
S Ene  gempotition fﬁ'y-
The Hilder program. ron Joy hape fome (tngtf
‘i-ﬁ &f * : - Iewgnld be of the greatest interest 41 were possitleta * )
;ﬁ T Im f’& Sm F}% give an averview of the etitire collection of finite 1-_8 . od
b i ) simiple groups. ¥ f M’,%

~%7) ﬁm‘? F?‘t'_e’\ﬂ"h Ono:Halder: Math. Atin,, 1892

Recill thata group G issiniple f it _conmi:ns no normal subgroup except 1 and G In
other words, a group is simple if it can't be-realized as anf exténsion of smaller groups; Every
finite group can be obtained by taking tensions, of Simplé groups: Thus the simple

“Theze is-a.compléte Hst of lini'te-simp].c.e groups. Theyare? W i'th Hiu / H iPbs £ im flc.’
phaiuiel Sudtiete

firute grouipscai be regarded as thit basiéb}l ng blocks Tor all finite groups.

Thi problem of classifying all stuple groups falls-into o parts: .
Wik “Compodition Series
Lov dan-Hiolder theorem

A.THE CLASSIFICATION OF FINITE siMPLE orours | = Ho<d He €4 Hp=G

A, Clussily all finite sitple groups;
B, Chissify afl eaiénsions of fitte groups,

{4} the eyelic groups of prime order. N ey 'tv&‘U Yohga >Semy f m‘ﬂ‘.
(b} the altesnating groups A, for 1 > 5 (see the next chapter), M

() ceriain intinite families of wiatix groups {said to bo-of Lie type), and
{d} the 26 “sporadic graups". :

By farthe largest elass Is (o), but the 26 spuradic groups are of more fhiciest than
thefi small pember might suggest, Some have éven specularéd thar the largest.of them, the
Fischer-Griess monster; is builtinto-the fabric of the utiiverse.

Az un examplé of & indteix group, consider

SLm(Tg} Lt i matricgs 4 with entries inFy such that detd = i
Here ¢ = p”, b prime, and Fy is' "the™ field with ¢ clefments. ‘This group is not simple
g 7 2, hecause \he scalar-fouirices diag(l,. .., &), £ = {, are in the centry forany i
dividing g—1, but-these are the only matrices in ibie centre, apd the groups.

PSL () 5 81,0 (F )/ fcenire)




are simple when m.2 3 (Rorman 1995, 8.23) and shien m = 2 and ¢ = 3 {ibid, .13}, Qther
finite Simiile groups cah be ablamed {rom the group in (1.8}, The sritallest nénconimutative’
group is 4s: and the second smatlest is PSL;{F;}, which has order 168 {see Exercise 3-8}

B THE CLASSIFICATION DE ALL EXTENSIONS OF FINITE GROUPS

Mua.h {wknown about the extensiens.of fnite groups, for example, dboul the-extensions of
e simple group by .mnlhcr. However, as Solomon writes (2001, p. 347):

. the-classification of all fintte groups is comptetely infeasible. Nevertheless
expenence shows that most of the-finite groups which ocenr i “nature™ .., are
“close™ either 1o simple.groups or to groupssuch as dihedral groups; Hclscnbcrg
groaps, el which-arise ratarally in the swdy of simple groups,

As we noted earlier, by the year 2001, a domplete irredundant list of finite ETOUDS Wil
ivailable only forthése.np o o order of about 2000, aud the number of groups on the Hstis
woverwhelming,

MOTES Thadream of chassilying the fiuiite simple geiups goes back atleastto Holder 1852 Lowever
2 clenr stratepy for scconplisling this did not begin to emergeunl] the 12305; when work of Braner
and-othérs suggesle:d ihat the key was to.study (he cenleaiizers of elements of order 2 ((he ifvalulion
eéfiraliners).  For example, Braver and Fovler (19553 showed ‘that; for any finite’ group H, the

“determination of the finite mmple groups with-an invelution centralizer. 1aumurplm. 1o H34 a finite:

problem. Later wark showed Ihat (he. problem is even tractable, and so the strategy became: {7) It
the groups & that are candidates for being an tnvalution centralizer fn sotne finite simple group, and
it for each £ in (a) list the finite simple groups for which i gccurs as an invalution centrbizct. GF
eowrse, this approach. applics. enfy 1o the finite %lmp[c groups romtaining-an clemerit of order 2. butin
old conjectiure suid that. except for the cyelic groups of prnie order, svery finice siple grung ias.
even ordet and hence containg an-element of otder 2 by (lanchy's thearenm [ENESS “With the, pmof of
‘Ihis cenjecture by-Féit and THompson (19633, the clfort to complew the classﬂ’caunn ol the fmnc
snmple groups beiganin eamest: A wmpl:1= ehssification was snnoiiced in 1982, bul there remgtined:
scepnc;. the prcol‘ deperidzd on th is of pagies of rarely read journal nriicles, dnd, T
fact, in rcwodung the proaf, gnps were discavered. Howevgr, thess have been closed, and with [hﬁ
on of Aschibacher and Sauth 2004 it has became generatly:actepted” That the ool of the
cl::sslf tion s indeed complew.
Far 4 pnpu!ar deenuat &l.the history of the classificatinn, see-the book Renun 2(06..and for
more tethnidal ascount, sée the expository arficle Solumon 21,

Exercises

3«1.Lel G-be the quaternion group (1.18). Prove that ¢ can't be writtéd as a semidirecs
product in any nontrivial fashion,

2-2 Let G bea group.ef erder mi ‘where m aod i bave no common fadtor 1£.G cantaing
cxaclly one subgroup- M of orderi and cxacily onc subgroup N of-order 1, prove; Ahat 6 s
the direct product.of M and &'

33 Prove that Gl (Fa) & S3.

3-4 Let G be the guaternion group (§.18). Prove thil Aut{G}) == Ss.

(. rmmety Kiop f o Koy, st Kk ey Kot

d e v .
Cokera —3 Cokerh s Cokerty —— Coker g’ — 0
3410 Let N and H be subgroups of G, and assume.that: & normalizes N, ie, ANE O N
fér all & F. Lewf denote the action.of & on N. Sth}{n) = hnh™t. Show that
(e nh: Nxg H = G

15 & homomurphism with image VA

311 Let and-Q be subgroups of a-group.G. Show thiu £7is the semidirect product of-
N and Q ilrand only T there exists 2 homomorph15m G -+ @ whose Teswrichion ' (0 33 the

identity map and whose kernel is N.

4 copies of 1). Deduee that {(1,0. ..

3. i' Let G be the set aF all niatrives in GL;'(‘Q} of the form. (0 3 5] ad £, Check that-
G isa subgroup.of GL3 (""{) -and prove tharit s a- ‘scm1d1recl pmduct of %2 {sdditive group)

by R* xR¥, T it-a diredt pioduct of these 1wo. _g_,mups"

36 Find the aulomorphism groups of Cag and Sy

3.7 Lot G = N0 where ¥ dnd Q acefinite groups, and lel g = niy be an elemeniof ¢
withn e ¥ and g & 2. Denate the-order of an glemient x by b{x}.
(a3 Show that {g) = k+6(y) for some divisor-k of [N].
{b) When O n_cl_s'triv_ially on &, showthat 6(g) = lem{nn). alg}}
{ElerG=58s=As» & wilhi 0 = {(1 2. Letn = (1.4,5,2/5) and let g = {1.2).
Show that (g} =6, o1} =5, anid o{g).=
{d)-Suppose thar H=(Cp)Pu0 v.here @ is.cyclic: of order p-and thil, for some

-generalor g of g1,

CLCTORI A I TIRN: S35) B

Show induelively iiaL, fori < p.
000,69

{00 O = (]

0,43 hats ordér, g (hence o{g) = o{it) - o{e) in'this,
LUEEY..

(e) Suppose that G = N () where N is commutative, {F is cyclic of order 2, and the
renertor-g of F actson N by seading ed{.h elenent 1o-its inverse. Show that {n, 1) has

orded 2 o mater whatn is {in particulay. é{g} is-inidependént of- o{}).

3:8-Let. G bt the semidirect G = N 3 @ of its subgroups N and Q. and let

Co{@r=ine N ing=quiorallye Q}

“feentraizerof 2 In A'), Show that

ZG) =g ineCy(@) g8 ZIO) an'n™) =g Wiy forall n & NY.

Let fbe Ih&'hon‘iqmorphism Q- Aul{N) giving the action of {f on ¥ thy cor_ﬁugarjon).

Show thatif A is commuative, then

Z(Gy={n-g1n e Cir(D) ¢ & Z{QNKer()},

and if ¥ _and:'Q'a;e_cammutative, then.

2(Gy={n-glneCyilhg & Ker(#}.
3.0 A homomorphnm a:G —H of groups is rormal if a((} is a normat. subgroup of
H. The'cokemel of a nommal hnmomorphlsm i dehncd to be-H /u{G). Show-that, if iv

t_l'yc following commutative: diagram, the blue seqricnces are exact and thi homomorphisms
a. b ¢ are nomal, they the red scquence exists and is-exact;-



CHAPTER

Groups Acting on Sets

Definition and examples
DEFNITION 4.1 Let X be.n scband Lok 7 be  group.- A left aefin of ¢ on X is a mapping
{g. XY guiFx X — X such that

@ le=x,forallx & X;
® ol =gdndadlgnpned e

A set together with n {left) action ¢£.(F is ralled'd (left} Giset, An action is frivial if px = &
farall g &G,

The conditions imply that, for eacki g & G, Jeft ranshation by ¢,
X+ X, argx,

has (p~"), as-an inverse, and therefore. gz is a bijection,
nivw says that

it gL € Sym(X). Axiom tn
g+ gL G = Bym{X) (18}
is-a homomorphism. Thus, from 4 left action of € on X, e obtain a homomerphism
5 Sym(X) cpnversely: every such hornomorphism delines anaction of G on X The
action is said to-he farf.‘{fu!_{nr effective} if tha: ‘homamsorphism { ;3) is injective, ., if

gr=xiorallxeX ==p=1

EXAMPLE 4.2 (u} Every subgroup of the symmelric graup Sy acts Iallhl.‘uliy on {1,2,...n}
{b) Every subgroup M of a group G acts faithfullyon G by {eft manslation,

HxG=G, (hx)rhx.

{chLet /7 e a subgroup of G. The gidbp 7 acts on Bic seLof Teft coséls of

GxG/H < GIH, (5.C)mgC.
“Thie action Ts faithful if. for cxample, & # G .and G is simple:
{d) Every Broup (7 4cts on itself by conjugation,

GG =G, (g.x)—=fx dé‘gxg"l_

of conjugates of x. The conjugacy élass of xg alivays contains xg, and'it consists galy of x.
if and only.if ¥y is in the-centre of G, In lingisr Algebi ihe vonjugney Blussés in G == GL, &y
are cilled similarity classes, and the theory of ratignal candmical forms provides a set of
rejresentatives for the cenjugacy classes: two matrices are similat {conjugate) if and only if
-they-have the same rational canonicat form.

Nete that a subset of X is.stable if ang anly if it is % anion of orbits: For example, a.
subgroup & of G-is rosmal if and - only if it is 2 union of conjugacy classes.

The action of G .on X is-said to be transitive, und G is said 1 st transitively oni X, if
there is only ons orbit. ie.. for any two eleménts ¥ and ¥ of X, mﬁﬁmz
’ﬁZ\T‘TE&""‘!‘mh‘cn called aixomggeneaus Goset, Purexample. Sy acts transitively
on {1,2,..1}. For any. subbmup H of'a group G, & acts tr:msuwaly on. G H. but the
action of G on itself is never transitive if G #3 because {1} s nlways a conjugacy class.

‘The action of ¢ on X iwdoubly transitive. i¥ for any two pairs (x.%3), (r1, y2) of
clements of X with x, %,v; and ¥ # »a, there exizts a (single) g € G suchthat g.xy = ¥y
and.gxz = vz, Defing k+fold transitivity fork 2 3 stmilicly.

‘ ST:\B]L[ZERS.)

Lot G pet-in X The stabilizer {oc isetropy group) of dn element x & X 15
Stabla) = {geG bgx=x}

Ttis & subgraup. bit il need nol he 2 normal subgroups (see the next femmay, The actios b
Sree FF SERGT= {e} for all x.

LEMMA 4.4 Foranyg € 0 andx € X,
Stah{gx) = g-Siablx)- g™
PROOF. Cortainly, if #'5 = x, then
(g Iga=ggn mgnimy,
and so0 2> Stuh{x}- g™ ¢ Stab{gx), Conversely, if g'lex) = px. then
les=glele =g iy =,
und 56 g™l g'g € Stabilx), e g’ € 2 Buati(x) gl o
Cleardy
{7} Stablx)-= Ker(G — Sym{X)),
X
which is 2 normal subgeoup of G The setion.is fAithful ifand enly if (Y Stabix) = {1}
EXAMPLE 4.5 (a) Let G act on irself by conjugation. Then-
Subix}={g&@ | gx =xg}

This group {5 called the centralizer Cefr) af':( In{7. Ivconsisis of all.elements of G that
commute with, i.c., cepualive, x. The inrerseetion

P T T T T B o S

oL M

is ah isoforphisnt or‘G~ser.«;-
L il St

subgroupof. G-

Faf any normal sabjroup ¥, G acts on ¥ and 6 /¥ by conjugatmn

{6} For any group G, Aut{?) acts on G.

1) The group of rigid motions of R isthe group of bijections B —» R® preserving
fengths. Tt fets on R vit the Ieéft,

A right ection X % G — G isdetined sientlaly. Tr turi 2 fighi action into a left aetion,
st g wx=xg” ', Por example, there is & naturs) dght action of G on the sot of righi
cosels 6f a sabgmup Hin G, aamely, (€, g} -+ Cg, which can be tuimed ioto a deft action
(g Cyer Oty

Amap of G-sets (aternatively, u G-mup.or 0 G-equivariant map) is & map @ XY
such that

elgei=gplx). allgegq,

An‘isormorghism of G-sets is'a bijective G-map; s inverse is then-dlse o G-map.

-g"’”"s_‘}. §: oifut
;
i_____...,._.—t

i

reX,

ORBITS
Let G desop XA sibset & € X is said to be sfable under the action of & if
pelr, x8X = gxeld,

The action.of G.an X then inducés an dction.of G on §. )
Write & ~g ¥ if 3 = gx, some g G, This relation is reflexive because x = by,
symmetric beeanss.
y=gx = x=g"ly
{multiply by- 2~ on the left and wsé the axioins), and mansitive becuuse
r=gv==z

y=gx =g (gs) = (g'ghx,

13 therefore. an equivalence:Telation. ‘The equivalonce classes-ate called Gorbifs, Thus the

Gorbits pactiion X'; Write- G4 X Tor the sét of erbits, g S| T
By definition, the Gorbit containing xg is O'%Lf i/ T;' Xk s ,J-L,?( {1 tﬁ&t“i

Gro=pmigea, Stab 2 G £
Teis the smaliest. G-stable subset of X ‘containing xo,

EXAMPLER.3 (i} Suppasc G acts on.X, and let e & G be an ¢lement of ordern, Then the:
orhits of {o} are the sets of the form

{These elemients nezd not be distinet, and so'the set may contain fower than i clements,)

() The _o'rbi_ts _fnr- a.subgroup H of G acting on & by left muitiplication are the right
cosels of c Whie 1 L0 Jor the sel of gt cosets. Similaidy, the orbits for H

NG oY ngﬁt muiuphculmn are'the-Jeft cosets, and we write G/ fiir the set of left cosets..
‘Noté thal the group law on G w111 not induce & groug iaw on G,r‘H uaiess & It nomal.

el Tty
{c)Fora group G-acting on itsell by conjugaiipn, the orbits are called, confugacy classes:.

fot & & G, the conjugacy class of x is lhe set 5_—'* s
ke oogeb partitaoy

faxg™ g€ G

isthe cemre of G, :

hy Let.G acton G/ 5 by left meliiplication, Then Siab{ &) = K, and the-stabilizer of
pH iz gHg 1,

(c).Lét ¢ be the: group of rigid motions of B (4,20. The stabilizer of the origin'is-the
erthogonal group. Oy for the-standard. positive definite form on T {(Artin 1991, Chap. 4.-
5.16). L T (R, +] be the subgroup of G of ranslations.of &7, i.¢.. maps-of the forn

VB gy some Gy & BT Then Tis g nrmnal subgroup of & and G~ T x O (cF. Aitin

1991, Chiap. 5, §2)

Far 2 §ubset § of X, wedefine the stabifizer of 5 to be
Stab(S) = 1g€ G155 = S}.
Then S1ab{5) is a subgronp of G, ant the same argument as in the proof.of (4.4) shows that
Stab(g Sy =g /Stab($}. g

EXAMPLE 4.6 Let'G-acron G by conjugalion, ainl 80 he.n subgroup of G, The stabilizer
of H i3 valled the normatizer Ng(H ) of H.1n G:

NtHy={g'eG gy = H}.

Clearly Ng{H ) is the lafgest subproup of G containing & as 4 norinal sibigroup.

EUE R UAERY MX)
ken StaI:CX) fzf4§ put,
TL4 G k) & gy~

PROPUSITION 4.7 If G acts traisitively on X, then for any xy € X, the map
AL fff{-ﬁ? 7 4:;9

‘g Stablxp) =+ wxg: G Sab{xp) — X
Y " ‘(
ng o5 i, (21 { #t4

% fixel, § LA
PrOOF. - It is'well-defined becavse, if i 5 8tab{xa), then ghis = gip. Ttisi injective because, sl
7 é{ Lagl

Brg= g'xg s g7 gl = kg = g.g" licin thesume Teft cosct of Stablxg). L{;,F ':}
] 3

s possile for g5 €8 b g &Stab{S] {see 1,33},

TRANSITIVE ACTIONS

.={’

‘TLis surjective because G acts transitively. Finadly, it i§ obviously G-equivariant. o

Thus every homogeneous G-set A is isomorphic 161G/ H for séme sibgroup 5 of G,

‘but such.a redlization of X' is not canonical it depends an.the choice.of xp € X. To sdy

this another way, the G-set G/H has 1 preferred poini: namely, the cosct B to give 2
homogeneows G-set X jegether with o preferred pofnt is essegiially the same as 1o give a

NeAlike 37, dos 2¢ nea Aran piive

COROLLARY 4.8 Ler G.act on X, andfet § =Gy be the orbit contatning xg, Thep the
cardiniifity of O §s I . P
|0 = (3 - Stablxg)). f)j‘ f‘ 7 ".f"*‘wit“ o)



If_r\'q

Q [Stab (X- € 0) -0 tsnorphes
Revenls

PROPOSITION-4.9 Letxg € X, IF G aicts transitively on X, then ™

Stablizer ©
Orget.

The eqiintion (19} is frequently usefol for.computing 10|

Ker{{ — Sym{ X))
is the largest-norma! subgronp comiained in Sts.h{x‘_a_}.
PROOE. When

Ker(G — Sym{X)) = ﬂ Siab{x) = n Stub(g xg) b n"g 'Snb{xo)_-g"‘

32 O i § A e |

Heiee, thé proposition is:a cauqequ;ncc af he following Jemma. - =

LEMMA 4.10 For any subgroup H of 2 group G, Meec s ~! s the- Jargest normal
EM use sybgroup comizined fn H
: ¢ W PROOE. Note thal Ny & ﬂses ghpt
i fg (rek-siberoup. Wisnomal hecnuse
mal gtp s = ) tnpogge)™ =

; belrig an intersection of subgroups, iy itsélf 2

#EG
= decompeje <
I {or the seconid eqanlity, we.used that, as £ rung aver the clements.of G, sa.also does gy 5.
C / [l/ Thus ¥ is 1 normal subgroup of G-contained In e e~ = H, If N is a second sueh group,
.'] / then

N=ghg™ celig

];j_' f)’laf
aluay
©n .A'Ljr_}? of G

THE CLASS EQUATION

for gil.g & G, and sn )
NcC ﬂ gfg™t e Ny,
Feirs o

When-X 1§ finite. it is a disjoint union of a finite. number af orbits:

“(disjoint upion). o .
i Strugture ol

-

x=Jo.

=1

‘Henge:
PRGPOSITION 4,11 The numbcrol"c!cmcnrsjhx is oyb.l &I &£ G?/
[X|= Z;o,;~§:(s Stab(e)), !:m Or.
T dable [ ke sC‘M

When & acts on 1tsclf by coruugalwm this feomyly becomes;

Parﬁﬁan &3

THEGREM 4.16. Every nomnvmi finiie p-gronp his nomtrivial ceptra, ™ Q

p-GROUPS

BROGE. B_v ASSLRIPON, (G 1) is a powerof p, and 50 (G 2 Ce (1)) is power ol p (# p g
forall y notin the centre’of G. As p dmdes ‘every lermin the class equation {22} eXcepl
(perhaps) iZ(G)], it miust divide [ Z{(G)| also, o

CoROLLARY 4.17 A group of order p® hos normal stbgroups 6f order g™ for al'm < .
PROGI‘ We use induction on 7. The.centre of G colitains.an £lement ¢ of order p,and so
= {g} iv 2 norial subgmup of G of érder p. Now the. Indudiion hypothests alows us ta

assume the résilt.for G/ N:and the comespondence theotem. (1,47 then gives il 1o us for
G. o

PROPOSITION 4.18 Evéry.group of order p? is comimutative, and hence is isomorphic to
Cp ® (.p o’ sz

PROOF. We know that the cenitre Z is.nonlgvial, and that G/ Z therclore has order T or .
in cilber case itds cyclie, and the- next result-inphies that (.is commutaive, o

LEMMA 4,19 Suppose-G conlais 2 subgroup K i in its centre (hcncc His “tornal) such
that G/ H is eyclic. Then G is conmmatative.

PROGF. Let a-be an element of G-whose | image.in G/ H penerates it ‘Then-every elenient
of G can be written g = a'li with e i, {.€ E. Now

ahad'l o= a"'a"_ fifx_"
.——r_a_"q‘h"h
=a'k.ah. G

because H & Z{G).

REMARK 4:20 The ab{wc proof shows thatif & & Z(GY aid G contsins a set of represen-
tatives for G/ H whuqeciaments commte, thert &- i canmutativé:

For 2 odd, itis now not difficult 1o shiow that any noneomrinttarive group of nrder p is
1sommph1|. in exacily one of the groups. cm:sl.:mtecl (304, 3. 15) (Exermae Aty Thus, up
ta-isamorphism, there are exaetly (Wi nonca ive groups of oedér p3.

EXAMPLE4.21 Let & bea noncommutative giaup of order 8, Then G must contain an
element a-of arier 4 (seé Exercisé I- -6y I G eontaing an dlement & of ordei 2 notiin. {u}:
then, G =z {a} g {6} whitre s the uniie ishimorphism Z/2Z ~ (Z/4E)*, ands0 G 2 D,
If not, any element b of G not in 1) must-have onder 4, and a2 =b2. Now bab™! f$ an
elermnent of order 44n {a}. Ircan ‘tequat a, because otherwise G-would Be commugtative, and
50 bab™! = a?, Therefore G is thE guatormion group (1. 18; 2.7k,

and so 2

* I suffices o show that 2 containg an-elericnt whase opder-is

- . . alemient will jrave vider exucily p. Ler: # Ibe an elementof Z; i p doesl divide the-order.of g, then it.
{tob& kel ¥ : :

1 = G/ﬂe@ THER M |45
A g B

—_—{)

@ — () AcTi

S {J The action.of Gon the set of left cosels G/H of H in G-is 5 very useful tool in the study of

PROOE. ‘The action of G nn O istansitive, and s R Xp defines ahijeetivn G,f ‘inb(xo) —» PROBOSITION 4.12 (CLaSS EQUATION)

Gl =37{6: Calxd ¢y
{x ruas.overa:sel of re) tives for the ¢ rfugacy classes); or
G} = 2]+ 3 G = Cr(v)) an

{¥ runs-over set of represeafatives for the confugacy classes coniaining iore. than one-
eIemcnr}

THEOREM 4.13 (EAUCHY) [ theprimie p divides |G|, then'G eontaiing an-element of prdér
P

PRODRE  We use induction on |G,  {orseme y not in the centie uf G, g does not divide (G 5
Ceripy), thei £-dividés the ditder of Cg(p) andwe ca apply induction to find an clement’
oforder. p in Co (). Thus we may suppose that p divides all of the terms (G Cq(¥))in
the class equation {second form), and so also divides Z(G). But Z(G) is commutative, and
i fullows from the structure thesrem! of:such groups that 2(GY will contain an element of
order p, i

COROLLARY. 4.14 A finité group G is 4 pagroup if anid oniy if every element has order-a
poweraf p,

PROOF. IF1G |.is 4 power of jp. therl Lagrarigé's theorem ({26} shiows that the order of very

-element is g power.of p. The Converse follows fiom Cauchy’s thecrem. o

COROLLARY 4,15 Every group of order Zp, p.én 'odd primic. is Eyelic ordihédral.

PROUF. From Cauchys théoremh, we know that such a G -contains elements s and r ofarders
Yand p respictively. Let H-= ), Thén H is of index. 2,-and 50 {2 nommal, Obyiously
¢ Hoandso G s U Hs )

G ={lr ., 7y pe e B TSR

Lr=2r 2 mslsrs e = 7,
= | mod p, Beeause £/ pZ is afield. itsonly. eléntents with squate b are 1, and
so ¢ = Lor -1 mod p. I the first cage; the group is commutative {any group generatcd by a

setof commuung elémenis i3 obkus!y cofmiutative); in the second srs~! = 7~ and we:
have the dihedral group {2.9)- f

As H is: normal s~V =r! some . Becanse 52 =

THere ia o direct proof thar the thearem holds for-an dbetian group % We use Tnductfor on 1he order ol 2,
isihli by p. because Hen Some power of the

dividies thie ander of Z/{g}, in which cise llw-rc exista fby mdusuon) an dleme of G.whose orderin Z /gl is
Hsell e divisible by p.

“divisthie by g B! the order of such an e[:rn:nt s

Mopprag &0 fixed poiits e f'artrf,:%
=1 i amrt genere T %75

"LHE LEFT COSETS

" groups. We jlilustraie this with some exivnples..
Let X'= G/ H. Recall thiat, fofany g.e G,

Stab{gH) = gSiab{H g™ = ghtg™
and the kerned of- o
G =+ Sym{X}

‘is-the largest normal subgroup (e ¢ g“ of G contained in H,

REMARK 4.22 (a)Let Hbea subbruup ol G not containing a normal subgroup.of G other
than 1. Theo G — Sym(G/HY is njecrive, and we have realized G asa subgroup of a.
symimetric group of order much smaller than {6 : I)F For example, if G is simple, then the
Sylow thearems (see Chapter 5) show (kat G has many propér -subgruups H#1 {unless &)
i# tyelich but (by definition} it h.:s it such normal subgroup,

(BY IF0G; 1) dogs not divide (& B, then

G — Sym{CG/H)

can't be injective {Lagrange"; théorers, .26}, and we van conclude that & cantains 1 normmal

-subgroup 7 | of G. For example; if G has order 99, then it will have: a subgraup N of order

11 {Cauchy's Ttheorem, I3_} and the subgroup must be nornial. In'fait, & = Nx Q.
EXaMPLE 4.23 Corollary 4.15 shows ihat every group G of oxdler 6 is efther cyelic or
dihedral: Here we-present a slightly different argument. According to Cauchy’s theoren
{4 13), & must contain an eleinent v of order 3 and-an element 5 of order 2. Morcover

{r} must be nomil because 6 doest't divids 2! {or mmp]y because it has index 2.
LcT. H = {s5}. Either (a) H is normal in &; or () # is pot. pormal.in'G. In the Brst
case; rer ey e, 5 = s, and g0 G = 2 {rhede) & O x Ca. In the sechnd case,
G — Sym{G/H) s Injective, honce surjective, and so (G 2,83 2s. 0.

Permutation groups

Consider Sym{¥ ) where X hasw e!emcnta Singe (up o 1somorphl\m) A SymmeiTy group

Sym{X) d nds only on the numt nf in X, wemay take X = {1,2,,..,0}. and
s0 work With . The symbol (13 3§ £ § 7} deriotes the perimittion sending | v 2, 22 5,
3 k=T, el

Caonsider a perinutation

__( ] 2 3 auir . )
a= (1) o2 o) .. e}

The pa:rs i, fywithi < f and @) >0 f) a.re caltéd the imversions of o,-dnd- i said
to be even of-dedd stcording as-the number its Inversions js even-or odd.. The segnamre,
signfa), of 5 #s -+ or 1 according as o is even or.add, For exumple, sign{e) = —1 if o is

a transposition.



REMARK 4.24 To compute-the sigature of @, donncet (by'a lirie§ each élement #'1n {he top
row fo the element 7 in the botlom Tow; ind-count 1he nuinber of times that the lines erass:
is even or oild aecording as this nimber iz evén or add. For example,

h, 2,3 4 _5
3: s : El 4 :z
iveven (&intersections). This works, hecause thers s one ergssingfor eatl inversitn,

For « permutation o constde’ thie produets

V= H iy (2= I{3— ) fp—1)
Lei<sn (321 -2)

(=1}

felh—oll = fo@-ollioti)-a(i))n (@) —a (1}
e -2 -a(2))

isieizn

{er{p)—o il — 1)),
The terms in tie produets are the sanie-excepl that each inversion mtrodigesa negative sign.”
Thetefore,
oV =sign{oV.
Noiw iet # be the additive group-of maps B+ F.For [ & Punda & 5p, let of e the
element of £ defined by
_(0_‘)_’)(2;_ PRS- f(‘."ﬂ]) - .\za{;,'})...
Fok i, 7€ Sp. onc finds that™
o) = {gn)f {23
Let 2 be the clemerit of P defined by
Plvccamy= T -z
JRARRE ]
The: game aggiment as above shows thit
op = signig) p..
On putting f = p in (23) and using that p £ 0, on finds that
sign{e) sign{r) = sipnfer 178
Thereford, “sign” is a'homomumhism g = {31} Whenn =2, it is sutjectivé, and so its
kernel isa normal subgrpup-o_f Sz oF order 7 called the alternating grongA,.
 eachiva product aver the 2-ciement subssts of £1,2, <evun}: Eie Rachor: commespomding to the subsct i)
E{fmiy
Firz e ado e S, let x®.-Be the element of 27
definitien, fof b= ™ Therefore
GlefYE) = (e/)127) = Fltr"3 %= 1075 = (o ) £,

such that {x7Y = 2z Then (¥7)%.= 5%, By

Forexample,

g) = (15)(27634)(8). (24

Ithas-arder lemi{2, 5) = 10,

COROLLARY 4,27 Each permutation ¢ can be written a5 & product of transpasitiens; the

nuinber of transpositions in such a product js even or'vdd aceording as g s even or odd,
PROOF. The cycle )
fFyfad Y= {f1 f;} s (_r}..;l'.-._l)l_}}.-; i)

andd sothe first statement follows from the proposition, Because sign isa homaomarphism,

and the sig of a transposiion is —1, sign{a) = (1 yhmasposidons e
Nate tiat the formula in the praok shows thar the signatuie of a cyela of lenpth ris
(=172, that is, wn r-cycle.ds &ven or odd acceoiding as # s odd or oven,

1 iy possible (0. define a permutation to be even-or odd aceprding as it 34 4 product of an
even or odd number-of tinzspositions, but then one has o 0 through an arpument as shive
1e show: that this ig:4 well-defined notian, o

The corollary says that 5, is Benerdted by transpesitions, For 4, there isthe Totlow)irg
result, ' '

CORCLEARY 4,28

PROOE. Any & € Ay is the product ( pussibily empty) ofan even dumber 6§ transpositions,
€=ty ), the-praduct of tive trangpositions Gan always be written asa product of
3-gycles:

The alieraating gra up-Ap is gerierated by eycles of length three,

{EnGn =wn ease j ez k,
UPYA) =3 PYGRNFRYED) = (R)R)  case i, j k2 distinet.
1 case (i) = (k!).

Recall that iwo-clements 4 and b ol 3 Eroup G are said 10-be conjupate o ~ & if there
exists an element 26 G such that b = zag™! and tiat e juguey is an equivalence relation.
For a group G, itis useful ey deferming the conjugacy classes in G.

EXAMPLE4.29 In S, the conjupate of a cyele is given by
[

gl didg™ = (o) eglind).
Heneo gliv o) fly gl (glin).. g (503 e Hewgfin}} téven if the eycles are
nol disjoint, because corfugation.is & homomorphismy), In éther woids, lo obtain gag—!;
replace each clemen in.each eycle of‘a-by-‘iis_imagg tnderg.

We shall now determing the conjugacy. classes in $,. Bya partition of n, we foenn 4
sequence of imtegers ny ,, .., ng such that

PEn 2 < gap S nand

REMARK:A.25 Cleatly sign iy the unigue homomerphism Sy, -+ {1} such that signfe) =
=1 for every wansposition 7, Now fel & = Sym(x } where X is # set with » elemenits. Ohée
we Bave chosen an ardering of X we can speak of theinversians of an elemient @ of G.
Define gfer} o be 4-Lor ~1 according-as o has an even o an odd nurotier of inversions. The
same argurients as.above show that £is the umiqué homdtarplitsm G - {1} such diar
s{or) = 1 for every wansposition @, In particular, it is independent of the chaice of the
ordering. In athier words, the. parity of tlie number atinversions of o is lndependent of (e
«choice ol the orderiing o X, Can yon prove this directiy?

A eyele’ fs-s peroutativn of the Follovng form
Iy b By b {3 b e ba ey, remaining.i ‘s fixid,
The {7 are required to be distinct, We denote tais eyele by (iyiy,.4,), and call r it Iength
~ note that r iz alsa its arder o8 an element of Spe & cycle of Fength 235 a wansposition,
A tycle (i} of length | is the:identity map. The sippore af the eyole {i Lo Be) s tie set

{1evende i and eycles nre said 10 be digjoint if their supparts are disjeint, Nuote that digfoing
cyeles commaute., If -
= (I fed e (rdy) {disfoint cycles),

then y
Lt LT L S S LN A

and it follows thate’ hus erder lemir, 5..... ).

{disioint cyiles),

PROPOSITION .26 Evelyparmutation can be writion fin cssentially vne wiy) as a praduct
of disjeint eyeles,

PrOGE. Lotir € S, and iot @ ¢ {1.2.....n} be mm orbit for (). I£}0Y = r, thien for any

s,
G =li.ali), ..oy,

Therefore o and the cyele {fo{i)
Let

o 677H(EY) Dave the same action on awy: element of .

. 1.
{1.2.‘.,.,H} = U-O-f:
Je=l
be'thié deeomposition of {1....,n} into a.disjoint union of orhits foi-{r§,

1 y and let yy be the
cyele associated (as-above) with @;. Thea )

7 =4 '”?‘m
isa dcc'omposi'tibn of & into a product of disjeint cycles. For the unigueness, note that
a decomposition o = y; -+ ¥m i0i0 8 product of disjoint cyeles must comespond fo a de-

compasitien of {i....,n} ifto orbits (ignoring cycles of Tengths 1 and otbits with ohly ong -
element). We can drop cycles of length one, change-thé order of the cycles, and change how
we rite eachi eycle {by choosing different initial efements), bt thi's alt because the arbits
are intrinsically. attached to 7, g

For example, there are exactly 5 pardtions of 4, namely,
F=Ldl+15], d=14142 4=143, 4 =243 4=i,
and I, 121, 503 partitions of 61. Note that 4 partition
hlm}= 01U UG (disjointunion)
of {1,2,.. .n} determines a partition of 7,
MR Ry g, a0,

provided Ihc_n_umberiﬁg'has been chivsen so that |0y < 10:41], Since the ofbits of an
alement o of S,y form . partition.of {1,.,..,n}, we can attach 1 each stich o a panision of 7.
“Bor example, the purtition of § attached to {15M(27634)(8).is 1,2, and the pantition attachei]
101 attached 1o

L NS B (Y A R {disjoint eyeles) | <n; S,
(1~ T ni onesy..

PROPOSITION 4.30 Two-elemonts o and r of' S,
the same partitions ofn.

s Ll e 0k
ke Gonfugate if and onty. if they defing
PROGE. === ; We sawin (4'.2?}} that CONjuZALNE an Gemen! preserves the type of its disjolit
cycle decomposition. o )

== L Sinee o and-r define: the samipartitions of 5, their decompositians inte products
of disioint.eyles have the same type:

o= Js)‘ .. J,__.'},

1'r-{5;4.,.",{)fj|’.‘.i")._..(_I_' AN

If wedefine i to ho
R Y LN TR,
Vi i e e )
then
) ga’g"l:r" [}

EXAMELE 4.3 (18) = (335 )28) (20-) .
ﬂiﬂ)—}?;k:"—ll distinct &-cyclosin §,,. The } iz

fffai iy = (ixiy.. e} =

REMARK 432 Forl < k <, there are
needed so trat we don't count

& !.i}nes, Similatly, itis piyssitile to caumpute the number of clements in any conjugacy ¢liss
in S, but a Jidle care is needed when _Ihe parition of-_,-r tas severat terms equal, For exuraple,
thie numberof permueations in §4 of typs (ab)ed)is

1 FA4.. 9 FOE R




The L i needed so that werdon't cotnt (ab)ed ) = (cd M{ah) twice. For 5§ e havethe
felivwing table:

Partition  Element No. inConj, Class Pty

IER R E Y 1 1 even
i+142 {ahy. 6 add
1+3 {abe) 8 even
242 {ab}cd) 3 even

4 {obed) 6 add

Note that A4 conlains exacty 3 elements of order 2, mamély those of lype 2+2.and thal
tdgether with 1 they forma subgroup ¥, This group is a union of conjupary classes, and is
therefore 2 normal subgroup of Si..

THEGREM 4.33 (GALDIS) The group A4 s simpleifn 2 5

REMARK 4.34 Forn=2 4, isiriyial._a_nd'fnr =13, Ay.is cyclic of order'3, and hence”
simnple; forr= 4 it iy pénabelian and nonsimple -— it contains the normal, eencharacteristie,

subgroup ¥ (se0 4.33).:

LEMuA #.35 - Let N bign pormial subgroup of Aa (n-=-53 0N conialnsa cyele of length.
thres, then Tt contuing. all cycles of lengib thiee, arit 0 equals An fby 4.28%

EROOF, Let y'be the eycle of length three in'¥ ;and let o be a secand cyele of length ihres
in Ay We koow From (£:30) that ¢ = gyg~" forsome g € Sy, If g € Ap. then this shows
Ahat & is alsp in A, B 0o, becsuse s 2 5, there exists 4 lranspositien-€ 8, disjoint from 4.
Then g€ Ay-and

' o=t =gy !

and §p apaina e N. a
The next lemma comptates tlie proof-of tié Theorfent.

"LEMMA 4:36. Bvery nomal subgroup M oof s n = 5,8 # |, contdins a cele of fength 3.
PROOF. Leto &, 0 4L [f o isnot a:3-eycle, we shalf copstriét gnothier elements’ € M,
.t.r"?é_ 1, which fixes migre clements of £, 20, ...} Uian iiocs_o,., I o' is ot o Jocyeles then
we-fan apply the same constriction. After a finite number of steps. wearrive  a 3-cycle.

Suppose & is not v 3cycle, When. we express it ava product of disjoint cyeles, either it
containg a cyele of length = 3 or else it is.a.ptodact of lanspositions, say

Al @ = (ihyia e ar
(i} o = [fuin){faia) -

In the first case; ¢ moves two-nurmbers, say f4. 5. otherthan fy, iz, f3. beenuseg &
(_i'_,_:‘za’g). {fL..Fq) Lety = (i3igfs). Then'sy Eygy~l=(ipizs.. 3 €N, and is distinct
from g (because it acts differentty an i2). Thus o oot £l bute' =yay g fixes
fa and all elements other thatdg, .. i5 fiked by o — it therelore fixes more elemems than a.

. Tn the second case, form ¥..01, o' as iy the first case’ with £g as in (i) and f5-any.
element distinet from ij.iz.da.is. Thed o1 = (i iz){Fafe): -~ is distinet from & because
it-acts differcnily-on iq. Thus o= mo~t 1, but 4 fixesd and iz, aad all elements
# H, s 0ot fixed by @ it therefore fxes at least one-more element thiim . a
Wit is h{? We don't know, and so if is.prisdent to introduce another coset 4.= bl Now
b= beeause bE = 1, and so we have

P

(= ) l-‘fi 1.
We sfil] have the reldtion chat: We Know a1 =2, but we don’t know what 52 is; and s0 we
set b2 =5 5

152 s
By {iit} ¢l == 1, ind by (i) applied to'chawe have c5 = 1. 'I'_h'eml'urc,_accogy.i:ihg oy i
riyst have § == T; we diip $,and so now b2'= 1. Since b4 = I we musl have 4 = 2, and 5o
we can drop 4 also, What we Know can be summarized by the table:

a a a b b ¢ ¢ a b =
1 2 3 1 2 H 1 L 2 i 1
2 3 1 » 1 2 ¥ 3 2
3 1z .3 3 3 1 3

The bottem right comer, which is farced by {ji), tells us thay ¢2 =3, Hence alse ¢3= 2; and
this then defermines the est of the table:

a g a b b ¢ a b €

f 2 3 1 2 1 t 1 2 1 1
2 3 1 2 1 2 3 % 3 3 2
i % 2 3 3 3 ¥ ' F 3

We find that we have thiee cosets on whiche b, ¢ adt as
a={123y b={12) ¢=(23).

More, precisely, we have wriiten down-a map G — 53 thatis consistent with the. above. rules.
A theorem (Artin 1991.9.10) now says thit lkis dogs in-fact deseribe the-action of G on
‘G/H . Since thethree elements (123}, T4}, and (23) gefieratd, S, this shows that the action
‘of G ol G/H indices andsomorphiism G —¥.83; and that M is a subgroup ol ordet 2.
In Astin 1991, 6.9, it isexplained how 1o make this procednce jnto.an algorithny whieh,
wihen it supeeeds in produeing a consistent (e, will in fact produce the corect table.
This algocithm 15 implemented in GAP. C

‘Primitive actions.

Lét G be a fronpacting on a set X', and let rhea partition of X . We say that x Is stabifized
by G if '

Agm = gAem
It stiffices to check the éondition for & set of generutors for G.

EXAMPLE 4.40 (ayThe subgroup G = ({12343} 0f.54 tabilizes the partivion ({1, 3}, {2.4)}-
of {1.2:3,4), ) B

{b) Mentify X" ={1,2,3,4) with:the set of vertices of the square ou which. Dg acts,
i the-usal way, pamely, with 7 = (1234), 5 = {2,4). Then D stabilizes the parition
1{1,3}.{2.4}} {opposite vertices stay appositel,

(¢ Let X be the set of pantitions of {1,2,3.4} into two séts, chch with two clemients,
Then 53 retson X, and Ker(S5 Sym(X)} is the subgroup ¥ detined in (3,32). )

.PROOY, If M Is normal in Sa. then N0 A; isnomnalin 4. Therefore sither 87

CORDILARY-4,37 Forn 2 5, the only normal subgroups of 5, gne' b, Ag, oeird Sp-

of WAy = {13 Tn the fiest case, ¥ D Aa, which has index- 270 Sgoand sa ¥ =

It the secand case, the map ¢ > x4 N = Sp/ g i infective, and so N Tus ot
5, but it.can’t have onler 2 because no tonjugacy class in S, (other than {11 Gonsists.
single elément. ' )

ASIDE 43R ‘There oxists 4 deseription of the confugaty clussesin Ax, ireyy whieh il is possible 10
deduce its simplicity for n = 3 (et Exercise 4-12). '

ARDE 4,39 A groilp @ issald to be solvable if there exist subgroups
G=Gg D6y 3G 8 200 G ={1}

such that gach Gy 15 normalin Gy andeach quotient G, / 3} is commutaiive, Thig Ap {alsb S5
s nnt solvableif 6 = 5. Let J{X)eQ[X]be of degree a1, ) ’
1n, Galois theory, one-attaches 1o f a subgroup Gy of the: group of permutationgof the roots of £
and shows that te roots ol F cun be abtained from the coefficients of £ by'the slgebiaid uperations
6F addition, subtraction, meltiplication, division, and the witraction of mth Toots i dnd ealy i Gy is
soyhble (Galois's thearem). Far every n, thers exist lols of polynamials f of dégresn willv Gy &= Sp

“and henee (when & 2 51 lots of polynomials noi selvable in radicals.

Tiie l‘odd-Coxeter. algerithm,

Let {7 be & group-deseribed by'a finite-presentation, and et £ be u.subgroup deseribed bya
penerating ser. Then the Todd-Coreter algorithnr’ is.a steategy for writing down the set of
left cosets of £ in € together with the aciion of'G-on he sex, Tiltustrate it with an example

(from.Astin 1091, 5.9, which provides mours details, but fiblc that be cotposes penmutations

in thi reverse dircetion from us). )

Lei G = fib,c |.a®, b2 c? chal and et A be the subproup generated by e (strictly-
speaking, # Js the subgroup g d by hie element of G rep d by.ibe reduced word
€Y. The operaion-of (¥ on the:set of coséts is described by the action of the generaors, which
miust satisfy. the following riles: '

(i) Fuch generator {i2.h, ¢ in ourexanple) acts as a permutation.
{ily The relatiohi{a®, b 6%, cba in our exmple} act irivislly,
{iii) The generators of H (¢'in out example) fix the coset TH.
{iv) ‘The operation on the cosers is transitive.

“The. strategy i to introduce cosels, denoted 1.2.... with 1. =1 f. as-nccessary.
Rale iiii) tells us siinply that.cl = c. We now apply the-first two rules. Sinck we

.don't know what al is! let's denpe it 2; ol =2. Similarly, leca2 = 3. Now.a3=a’1.

which according to (ii} must be 1 Thus. we have introdiesd thres (potential} cosets 1. 2. 3
peimuted by o 35 follows: . )
s zh s,

4 Torsalve a problem, an algoriibm mest abways lermingle in i finite-time with the correel unswer o the
prablem, The Tedd-Coxcter algoiuttm docs nil soly: the problem of deterraining ihether 3 firite preseriation
defines 4 finite group tin fart, there Is'no such wigorihm). I doés. howsver, solve the problem of determining thie

_'n'(dr.'r wf 2 fifiite proup Trom & finite presentation oEthe group fuse the Flgoritan with & themvial subprimp ]

The group & always-stabilizes the. trivial partitions of X', nemely, the set of.all one:
element subsets of X, and (X }. When it stabilizes only these.partitions, we.say that the
action i primitive; otheiwise it is fmprimitive. A subgroup of Sym(X) (e.g.. of 5:) issaid
to be primitive if it acts primitively on-X. Ohbviously. 5, itself is primitive, but Bxample
4:40b shoiws that D4, regarded as a subgroup.of Sq.indie ohyichs vay, {5 not jrimitive,

EXAMPLE &.4] A doubiy transilive action is-primitive: if it stabilized
o o (3

thiew there would be no'clement sending (x. Hwix
REMARK4.42 The-Gotbits form g paititior of X that is stabilized by G. 1f the.action is
“primitive, fien the partition inta orbits must be.otfe of the trivial ones. Henee

aclion peimitive = action transitive ot trivial,
For the femainder of thiy sccton,'G is a finite-gronp acting Fransitively on a set X with ut,
least two elements. '

PROPOSITION 4:43 - The froup 6 acts imprimitively if aimd ondy.if there-is a proper subset’
Aof X with at Jeast 2 elements such that,

foreach g € G, vither g A = AorgAnA =, 25)

Pioor. =>: The panition 7 stabilized by G contains such an A

— From such an A, we can fifm g pactition. {4, g1 A, g2.4,...} of X, which s stabilized
by G. o

A sibstl A of X satisfying (25) is called black.
PROPOSITION 4.8 Lot Abe & bléckin X with |4} = 2.and 4 X- Forany.x € 4,

Stabtxy € Stab{4} G G.
BROOF. ‘We have Stab{A) 2 Stab(x) because
px=x = gANA# R == pA=A.

Let yog Ay # x. Beeause G aols transilively on X thercisa g € G such 1hat gx="y.
Then g € Stab{A), but g gé'Slah{._t_)‘ '
Let y ¢ A= Theretis a g € suchthat gk = y, and then.g & S1ab{4}. o

THEOREM 4 45 The group G acts primitively on X it and only if for ine (hace al} x-in

X, Stabtx) is a magimal subgroup of G,

PROG. If G docs not act prinilivaly on X then (see +:43) there 5 a block A & X withat
ioast two-clomeits, and 50 {4.44) shows thin Stab(x) will oot he maximdl for any x & 4.
Crnversely, suppose that ibere exists an x in X' and a subgroup H suchihat
“Stably) & H GG
Then T ehaim thiat A = Hix is ablock s X with at least two elements,
Because H # Subx). 113 # (x}.md 5o (x} S AE X. o
g€ H.thengd = 4. H g ¢ #\ then:gd is disjuint from A: for suppose gphx = W'k
somel & H; then iLghi & Stabilx} C H.say '~ gh= k!, and g = WrrhteH. o



Exercises

4-) Let Hy and H; be subgroups of 2 group & Show that the haps of G-sels GiH; —~
G/ Hy ute in fatuind gic-a-onie. corespoidence with Wi clements £Hy of G/ Hy such that
Hy CgHag™t.

4-2 (a) Show ihatn finlte'grong & can'{ be equal (o tie union of he conjugates of 2 proger
subgroup K,

{1) Show thal {3} helds for an. mnmw group 7 provided that {G: H) is finite.

(<) Give ap example 1o stiow that {ah ils-in general for infinite-groups,-

{d} Give an example 67 proper subset § of 2 finite group & such thal G = =4 s 8SE” !

4-3 Show that any setol rep for thé ci

the group.

yupacy classes in a finite group generates

4-4 Prove that auy-noneommutative gréup of order g opan odd prime, is isomorphic to
one ol the two groups constructed in (3.13, 3.15].

4-5 Lot g be the smallest prime dividing (G 1 £y {assumed-finite}. Show:that sny fibgrovp
of & of index pis normal,

A4-0 -Show that a gmup of order 2m, m odd, teikaing a subgroup of index 2, (Hint Use.

Cayley’s theorem 1.2,

4-7 Forp = 5, show that the k-cyeles in S penerate 5,61 Ap aceording ns k. is ever o7
odd.

4.8 Let G = GLa(F4).

{ay Show (bat (G2 1) = 168,

(5Y Let ¥ ba the st of lines lhraugh the origin in F2: show that X has 7 clementq, and
that there.is 4 natural § infective homomorphism G —w8ym{X} = 55

{¢} Use Jardan caponical forms toshow (it G Has six conjugacy-clisses, with 1, 21,42,
56,24, and 24 eloments respectively, [Note' u:auf M s a'free Faleel-modele of rank
one, then Endy ,M(M b= Fafuli]

{d) Deduceibhat G is, simple:

4-0 Let 7 be a'group. If Ant{G) is cyclic. prové that G is.commutitive; if further, (7 is
fimite, prove that & is eyclic,
4+10 Show that 8, Is-generited by (12), (1 30, ., {

ba); alsoby (12),(23),.... 0t~ a).

=11 Lel K be aconjugacy class of 4 finite group G contzined ina neirmad subgroup Hof G.

Prove that & is 2 unjon of k conjugacy classes of equal sizein &, where k = (G:H-Calxh
forany x € K.

CHAPTER

The Sylow Theorems; Applications

- As an undergrnduate. | !'eameu‘_xhe-b‘yfmr thearems in my algebra clussés
But could wever retain. éither the Hatement ar proof of tltese thearets
in tmemury excepl for shirt periods of thaee. Liink the pmbfem weis
Hiar.f was-exposed 1o these z-’renm::x long before I had imernafised the
concEp cf o groug. actipn, Buir once.one lav e mitdser 1o approach o

i teaf object through the various natural proup aetions o Hat
object: and then look &t t?:e Varldus. dviamical featires of that Gk

forbits, stabitiseis, quotients, elc.) shen ihe Su‘au— :I:currm.r fend Caitichiys -

‘thesiem, Lagmugc 5 Heorem, eir, j PHEM a‘mm ] abs?ﬂ)mg an aciion
e Some metnral space fe.g the eonftigacy activn an fhe grong, of on
ruplesof elements on that gronpt und couniing. orbits aad s:ublhsm
Terry Tao: mul30853

I this-chapter, alf growps are ﬁn!re
Let G be.a group and Iet p be s prine dividing (G 1}. A subgroup of & is calied o Sylow
psubgrouof G if its order is the Highest pigwer of g dividing (7 1). In othérwards, A
is d'Sylow p-subgeoup of G-if it is o p-gioup ; and its index.in G is primeto p.

Fhe Sylow thecreras state-that there exist Sylow g subgroups for ali primes p dm:hng
{G:1), that the Sylow p-subgroups for a fixed: -J are conjugale, and that every. p-subgroup
of G is contained in such a subgroups Tioteover, the thearems Testrict i possibe uwimber of
Sylow p-subgroupsin G.

The Sylow theorems

In the: proofs, we Frequeiitly use that il 0 is an orbit for o group A acling on a set X, and
Xxp € O, thea the. map H =+ X, brs-fixp induces. 4 hijection

B/ 8tadbxg) — O
‘-._h—-—‘-‘—-—"—l-.-,

see (4.7). Therefore
{F : Stablxo)) = |0,

In particiilar, when M Is a. #-group. [OF i 2 power of b: either O consists of & single
element, or. | O] s divisible by p. Sinée X i a digjoin{ union of the aibits, we can conclude:

4.1 {a) Let o8 Ay, From Sxerclse 4-11 we Kricw that (e Cﬂﬂ]ugﬂc}' class of o in 8,
cither femiing &'single conjugacy class-in 4, or breaks up as aunioy of wo-classes of tqual
size. Showthat the seeand case oecuts <= o doss: Hnt cmrute with an edd permatation
<= ke pantitioh of #-dafined by o consisis of, :hsnnct oid § integers.

(1) For edich conjugacy class Xin 47, ive a memiber of K, and detémiine T4

4213 Let ¢ he the:group with penorators o, & andd relatiany ¥ == 1= b2, abed = bab,

{a) Use the Todd-Coxeter algorithm- (with 7 = 1) to find the image of G under the

hemomorphism G -+ Sq, 1 = (G 1), given by Cayley sThcorcm 111, {Né.need 1o
inelude every stepy juét an outline will doj
() Use Bage/GAT to check your answer.

4-14 Show that if the aétion of & on X is pimitive and effective, then the action of. any
nprmal subgroup F 55 1 af G is mansitive.

“4-15 (aj Check tha Ag has 8 clerents of ocder 3, and 3 elemenits of nrder 2. Honte it as
no element of vrder 6,

{1 Prove that A4 hos no subgroup of dtder & {ef, 1,300, {Use 4,23))

{&) Prove thut 44 s the only subgroup of $4 of order 12,

4-1% Let 7 be agroup witka subgroup of index r. Prove:

{2) TEG 1s simple, then (G 1 D.divides rl,
(b} IEr=2.3.0r4, then G ean’ “the:sitple.
{c}- There exisis. 2 nonabelan simple £reup with o subgriup of index: 5.

4-17 Frove that 5, is isomorphie 1o & subgraup of Ay,

4-18 Let H and K be subgrovps of a group G- A double caset of H and ¥in G is o, set

of the form
HakK = {_f:qk theH ke Ky
for soRicd € G.

{u) Show that the doublc vosets of /i and K jn G pattition G.

() Let H TaKa~ acton H x K by 5{h.k) = (kb,a= b7 Lak), Show that the orbits
for this action are exaetly the fibres.of the map-Or. &) > hak: H 2 K - Haf

{c) (Double coser counting formuta). Dse (b) tol show that

{HIIK]

oK = e RaTy

4-18 The viormal subgroups N of 4 group & are those with. the following property: for
every set X on which & acts transilively, ¥ fixes one x in X ifand only if ¥ fixes eVEry X
in X,

4-20) {This exeércise assumes g knowledge of categories,) Lit G be a group, and let F
be. the functor scirding.a G-set o ity underlying set. We can regard G as'a G-set, and s
an auwmorph[sm @ of F defines an automorphism d4gof G (as 2 set). ‘Show that the'map
aerag({lyAU(F) -+ Gisan isomorphism of graups {ET. 5266548},

LEMMA'S.] Let H be a pgroup acting on 8 finfte set ¥, andlet X H be the set of paints.
fixed by H: then

IXi= i) nod g,

When the Jemma is applied to a p-group H seting dn itself hy conjugation, we find that
(ZiHY: =K 1) modp
and so gl (Z(H Y 0) (of. the proof of 4,16

THEQREM 5.2 (SyLow By I, &t G bea Hniite group, und ler p be prime, If i {(G Y3 then

G hava subgroup of order p”,

PROOE. according to (4,17, it saffices 1o provethis with p the fiighest povier of p dividing
{G 1 1}, and:so from naw on weassume that (G ;. £ 1) =2 " wilhi t sior divisible by p-Let

X == {eubiefy of G-with p7° clemerits),
with the action of G defiied by

GxX - X, (\j{_..é)'!-r A Ei;{'ga fae A

Let Ag X, andlet ]
H=Subld) ¥ e e G lgd = 4}
Forany ag'e A, fies gt H — 4] iy injective {canceliation Jaw}, wd 5o (& 1) 54 A=
Ini the equation .
{G:1)= (G VHYH )
weknow that {G 1) = p'm, (H 1) = p7.and that (G 1 H ) 1s thie pumber of elements in
the orbit of A. If we can find an A such gt p doesn’ ‘t divide the numbér of elements in iy

oibii, then we can conclude that (fot sitch ‘a0, 4Y;, H = Stab A has order .
The fumber of elements i X is

£[= (p'm) e R e T e
# FAFT =1} (pF =iy pr 1)

Note that, because ¢ < pT, {he pawer.of o dividing: p* it i i ik power ol p-dividing §, The
same Is Lrut for p" —~i. Therelgre the corresponding Terms on top and bottom are divisible.

by the same, tiowérs of p. and so p does not divide.| X[ Because the orbits fomoa partition-

of X,
|X= Eum,- O; the distinct orbits,

and §o at Yeast one of the | O] isnot divisible by g, El

EXAMPLE 5.3 Loty = 2/ p%, the ficld with pelements, and let- G G (Fpr). Thie st xa.
inalrices in & are prccnscly thostwhosé cotuimms: form a basis for 7 'l‘hus, the first cobumn
can bt uny honzerd veetor it Fo.-of which theresare p" — 1;: (e second columin can be any
vetlor nol it the: span of the first column, af which there'are p" - pi and so on, Therelre,
the order of © is

FP SRR Y LU S T | TS SN SN TP

>
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-and s the power of £ dividing (G 11y is p"i‘z“‘"ﬁ’."“”. Consider the upper triangutar
matrices with 1%s dowin the-diagonai:

I o* % w00 =
0.1 % o %
001 - %

o 0 o 1.

They ferma subgroup U of erder p™~! P2 p, which is therefore 7 Sylow p-sibgroup
3. )

REMARK 54 The theorem gives another preef of Cauchy's theorem (4.1}, If aprime p
divides (G113, then G will huve a suhgroup H of order. prand any g € H, g # 1, fs4n
elemént of G of order p.

REMARK 5.5 The proof of Theorem 5.2 ean be modified to show divectly tha for each
pawer g7 af p dividing {G ; 1 therc.is a subgroup & oG bf drder #7. One-ngain writes
(G2 1) == p"m dnd Considers the sot X of all sabsets of deder p7. Ti this case, the highest
power p*¢ of prdividifig | X | {5 the highest power of-p.dividing m, and it foliows that there
is an orbit in X ‘whose order is not divisible by pfot!. For an A in such an orbit; the same
counting argument shows that Siab{4) has p7 elements; We recommend that the. reader
“write ont the details.

THECREM 5.6 (SvLow II) LerG be a finite eroup, and et |G| =
by p.

=p'm with s notdivisible

fa) Any two Sylow p-subgroaps are conjugate,
{b) Lét 5, be the nuinberof Sylow p- subgmupx InGr Hmn,r,, = 1 mod p and Spltnt,

Ur J {c}- Every p-subgroup of' GG 15 comiained in.a Sylow p-sibgroup.

Let 1 'be a subgroup 'of . Recall (4.6, 4.8) thit the siermalizer of & in &7 is
No(H) = g6 Giahg™" = H)..
and that-the number of conjugates of i n G is-(G : Mg (7D).
LEMMA 5T Let P be o Sylow p-subgroup of G.and fer M be a pesubgronp. IF R
normalizes P, Le,df H C.NG(P), then H.C P In partieular, no Sylow p-iubgraip of G
dther v P nbrmalizés P
FPrODE. Because H and P.are subfraups’ of NgiP) with £. notmalin Ng(P), HP | 1'; a

suhgmnp, and B /H OB~ HP [P apply 1 46). Therefore (HF s P} is a power of p (here
Is where we use that. & is.a p-groupl, but

(HP 1) = (HP :P) P 1)

and {P.: 1).is the largest power of p dividing (G 1), hence alsa the Iargcst power of ”
dmdmg (HF 1) Thus (HP 1Py = p% =1, and HCP, o

EXAMPLE 5.10 Let§ = GL{V) where ¥ is a vector space of diln_enéioﬂ # ovér Fp. There
is o geemetric description of the Sylow subgrogps of G. A maximal flag Fin V is a
sequence of subspaces”
V=¥Vt D3 WS- ¥ 240}
with dim ¥} = £ Given such a-flag £, let U(F) be ihe set of linear maps o ¥~V Such thit
(o} @(¥) & ¥ forall i,.and
‘() the endomarphism ¢f Vi f Vi induced by & is the identity map:
| elaim that P F) i3 - Sylow p-subgroup of . Indeed. we can construcl abasis ler, ..., g4}
for ¥ suéhi{e; } is basis for ¥, 4ey.2} s a basis for Vs, and s6.0n, Rnlﬂtivé 1o thig basis,
thi-matrices of the elements of U(.F} are exgetly the elements of the grouy; Lol (5.3}
Lergs Gla ([l‘) Then. gF = {gVn. gVn-1:...} isagaina maximal flag, and VigF) =

£-UF)- . From-ta) of Sylow 11, we see thit the Sylow: p-sibgroups of G am precisely
the groups-of the fm‘m LR for some m.zx1mal flag F.

ASIDE 5.11 Some books use different numherings for Syinw‘s.'

the.original {S¥low 1572}

Ihave | Ity LTl

Alternative approsch to the-Sylow theorems
We briefly forgét thiat we have proved iiie Sylow théorems,

THEOREM 5.12 Let 3 bea group, and let P & Sylow: p‘subgmup of &3, For any subzrouyi
H of G, there exists an g € G such thI HrgPe™ isa Sylow p~subf'mup of H.

PROOF, ‘Recal (Exercise 4-18) that & iS-wdiyjoint unjon of the double coséts for & und P,

e il
(G= 3 Jart =} e

whera the sum js 6ver a sef of represenatives for the dooble cosets. On dividing by | P we
find that .
iG]

1Pl

_ iH}
- Za {HNaPa~1y'

“amel sov there exists anl 4 such that {&: H NaPa) is not divisible by p. For such an.a,

HNaPalisa Sylow p- subgroup of H. I

PRODE(DFSYLOW 1) According to Cayley's theoremn {1.22].G embeds inwo S,, and S,
embeds into GLy (F,) (see 7:1b below), As GL,{F, ) hus a Sylow r -subgroup {see 53050

-also does G. o

PROOF (oF SyLOW 11{a,é)) Let P beaSyiow prsubgroup of G sndlet P be a pesubgroup
uf G, Then £ isthe anigue Sylow p-subgronp of P!, and so the theorem with £ = £/
shows that a Pa™! o P’ for some-a; This implies {a) and (<) of Sylovw I o

conjugation. Because:
‘e, at ¥ast one K- 6rBiL ‘consists of 2 single Sylow p-subgroup, But then H noimalizes P
and Lemina .7 implies that B < P. &

PROCP (OF SYLOW I} (2) Let:N béthesel of Sylow p-subgroups in . and 361 G acton

X by conjugation,

tg. Pr—gPgh GxX =X

Let O"be i':nc of the (7 -u_rbils: we have te show O isall of X,
Lei £ € 0,.and fer-fact on O through the action of G. This single G-orbit chay: break
up inte soverat P-otbils, one of which will be { P}, n:fact this i the only one-point orbic

- because

(O isa-P-obit = 1 nomalizes &,

which we know (5.7) happens only for ¢ = P, Herice'the number of elements in every
P -gtbit other than { P} is divisible by g, urid we havc what || = bmod P
Suppose. there exists a P ;é 0. We agdin let Pactan'0. bt this tine the arguinent

-shows that there are.no one-point or‘b"itsq and-so the nunther of elements in every P-orbitis
divisible by p. This implies thav#0 is divisible by p, which comradicts whar'we proved in

LREEY pa:_agmph.._‘ﬂ-.em_éﬁq be no such P, and o0 is all of X,

15)-5incé 1, is nwetlie. number 5f elements in. O, we have alit shown that 555 | (mod
Pl

Let P be u Syfow fi-subgroup of G According 1o (a), 55 isthe number.of mnjugatcx of
P which equals

T 1)
(G:Neglfiy= =
' T (Ne(PY: 1)

(G 1) _ m
(NGIPY: PY-(P31) (Ne(F):PY

This is a factar of #r.
() let A beu p -subgroup of G, and let A acton the set X ofSonw g-subgroups by
== ¥ i3 nol divisibie by p. X musepe nenempty (Lemma 5.1),

COROLLARY 5.8 A Sylow p-subgroip i nomual i anad only if it is the-dnly Sylow p-

subgroup.

PROCF. Lei P beaSylow p-subgroup of G, If P is norinal, then {a) of Sylow H implies
that it is the only Sylow p-subgroup, The converse staermént follows from.(3.7ch (which
shows, in fact, that P is even charncterstic) ]

COROLLARY 5.9 Suppusc that i group G hus only bue Sylote, pesubjgroup for each prime
p-dividing its order, Then G s a direct product of lis Sylaw p-subgroups.

PROOF. Let By.... - Py be-Sylow subgroups of G and lel |_.f{',-_ = p!- i the. p; are. disliney
primes: Because each P is normalin G, the prnducl £y v+ By i a pormal subgroup of &,
We shill prave-by induction on & that it has order p) "'Pk*‘ Kk=1, lherl. i& néthing to”
prove, and so we may suppose thal k> 3dad tan Py Py has order FAA Ap;f_“‘ Then-
ProsProg NPy = by thereflore {1 519 shows that {( By« Pyoy ) Py 14 the dlr_ect product of
Py o Pyoyand Py, and sobas order piy! - pif, Now (1.52) applied to the fill set of Sylow
subgroups of & shows that ¢ is their direet privuet. o

Examples
We upply what we have leant 19 obiain information about groups-of vidous orders;

5.13 (GROUPS:OF DROER 99) Let & bave ordéi 99, The Sylow theorems imply thit G has
at ledst one: subgmup H -af onder + and Tni fact su —9 and 111 = ['med 11, Tt follows ‘that
s15 = 1. and H is normal, Simitarly, 59| i1aid yg = l med 3, and so the: Sylnw 3- subgroup
is:also normal. Hence-G s isomorphic to the direct productof jts-Sylew subgroups {59}
which are both commutative (4.18),and so G commutative, )

Here is an altémative proof. Yerify as before thal the Sylow 11-subgroup N of & is
nomial, The Sylow 3-subgroup @ mips. bijectively onto G/N, andsa G =N A0, It
rempains o determing th aclion by canjugdtion of @ om N. But Anl(N') is eyclic of order
10 {see 3.5). and sa.there is only the mivial homomorphism @ -+ Aut{V). It follows that G
s the direct productof N and £

5.14 {GROUPS OF ORDER py, By kass p <) Let G be such a proup. and Jet #.and
) be S)’low pand g subgroups. Then (G : @) = p.whichis he smallest prime dividing
(G 1), and so (see Exercise 4-3). @ is normal. Because £ maps bijectively onta G/, we
have that.

T=0np

and it remains to-determine the action of P on ) by conjugation.
Ther group Aut{ '} is cyclic of order g -~ 1 (see- 3,83, and so, unless pfq~ 1, G gx 2,
It plg — 1, then Aut(Q) {being cyclic) hes 2 unique subgroup P/ Qfo_rdc_r p.Iafact P
consists ol ihe-maps ) ) o )
{f e BigZ|iT =
Leta and® be generntors.for P and O respectively, and suppose that-the action of @ on ¢
by copjugation is x > x7, i 3 1 {in B/gZ). Then (7 has geucrators 2.4 and relations.

59,

arex

o, aba™ = B
Choosing a differerit /5. amounts 1o chnosmh a d|ffcrcn1 generator ¢ for P, and o gives an
|snmorph1c graup [£3

‘T sumtary: 1 p f g~ §, then thé only. gronp of order pq is the-cyclic. Froug ('pq. if
fla— 1, then there s aléo anonabeliangroup given bythe abiove genenitors and relations.

5,15 (GROUPS OF.ORDER 307 Let G he gioup of order 30, Then'

s3 = 1,47, 10, and divides 10;.
5= 1.6, 1L,,.. and divides 6.

Hence 53 =1 or- 10, and sz lord facs; at Jeast one ix I, for oheiwise there would.
hie' 20 etérmen .of order 3 and 24-élements of order 5, which i3 impossibie, Thcrefnrc. a
Sylnw3 suhgroup # ora Sylow W—subgmup Ois nmmal and so H = PQ i1 a subgroup ol
G Becatse 3-doesn't divide §— | =4, 15.1d) shows that H is commutative, Ff = 5 Cs:
Henee

G {C] X Cs) iy q:e.



and it remaing to detsrmine the possible homomorphisms 8: 6} -5 Aut{Cy x Cs), Butsuch
a homomerphisny 6 Is-determined by the image-of the nonui::rmt;f glément-of €, which
‘st be i element of orider 2, Leta, b, ¢ geterate Oy, s, Cy, Then

AU(C3.C5) = Ant{C3) X ABK(C5),

and the enly. cloments of AutCa:and. AutCs of order 2 are g +» 2™ and b 5 b~ Thus.
there dre exactly 4 homomorphisms &, and #{r} isone of the foliowing c‘I;:_mf;_nt_s:-'

‘arra ~t
b i
The grous corresponding to these homomarphising have centres of order 38, 3 (zenerated
by 6,5 {generaled tiy £y, and 1 mpccnvely, and henee arg-ponisomorphic. W hivve stiownt

thiat fup to isdmorphism) there are exactly 4 groups of order 30: For example, the third on
our Nst has-genertors 4, 85, ¢ and relations

as, b, o2,

areg=t
b pml

]

e e
b

b !

ah=ba, cac™ =™, heTi =

5.16 {GROUPS OF ORDER [2} Let & be a, group of onder 12, and it £ be its Sylow 3-
subgroup. If £ is not normel, then P doesn™t contain a.nontrivial normal subgroup of G,
“and 5o the mep (4,2, action on the lelt cosels)

9! G =+ Sym(G/ P) = 85

i# injective, and ifs image i a subgroup of S; of awder £2. From Sylow II we sec that &
hits exacily 4 Sylow 3-subgroups, and hence it has cxactly: § elememts of veder 3, Bur all

elements of §y of vrder 3 arein 4y (see the-tabile [n 4,32}, and 0 (G} intcrsects 4, 1 i

subgronp with at leagt 8 eleménts, By I..agmnge stheorém g{ G} = A4, ond 56 G 2 Ay,
Now assome.that i iorodal, Then G = P %' where @ 1 s the Sylow 4- -subgroup. {f

s cycllc of order 4, tion-there is 2 unique nonidvial map Q(- (‘4) ~ Aut{P)(= C2),.

and hengewe nbt:un a single noncommutative group 3 % Co. If @ = Cax'Cz, there arg
exaclly 3 nonirivial homomorphism &; 0 — Aul{ P}, but the'three groups rcsulung are all
isomarphiicto $3 % Gy with Cs = Kerd. (The hamnmurpmsms differ by an automorphistn
of (7, aud s we cun aldo ipply Lemma 3.18.)

In total, there are 3 noncommulanve.gmups of order'12 and 2 commutative groups,

5.17 {GROUPS OF ORDER p’) Lot & be:a group. of order p3, with p an oild prime, and
assumc G i not commautative: We know from (4:17) that & has & normal subgroup & of
order p2,,

IFevery element of G has ander £ (except ), then I ma Cp x Cp and there is a'sebigroup
@ of G'of order. p sich that O AN ={1}. Hence

G=NugQ

for spine homomorphism 650 —+ M. The order of An() = GLa(Fp) is (p?~ 13(p* ~p)
{see 5.3}, and so its Sylow p-subgroups have order p. By the Sylaw theorems, they. are
conjugate. and so Lemma3.19 shows lhal there js exactly. anc nonabelian. group in this case,

"Suppose & has eleménts, 01’ order p?, and 16t N be the subgmup generited by-such an
clement 4. Bediuse {G 1 V) = p s the smallest {in fact only) prime dividing (G : 13, N is
narma} jn & (Excrmsc 4-5), We neat show that G contains.an elemeni of order B onatin M.

of PN Q contalns P and @, and 50 ithas index 1, 3, 00'F in G, The firstfwo cases are
lmposqrbic for the same redsens 25t (a) and (B). IF (G- M) =5, lhe argument in {c) gives
an isomerphism G = As; but this is impossibile because.so{ds) =

Lxercises

'5-1 Show thata ﬁmta -group (ror necessarily compiutative) is‘cyclic I, for each 7 > 0, it
confains at most n elemeius of order dividing n,

We know Z{(G) # 1, and, because G isn’L commutitive, that G/ Z(() i not cyclic
(2.19} Thereefore {Z(G): 1}= pand G/ Z(G) & Cp #GCp, H particutar, we. see that for

MreGax?eZ (G) Because G/ Z(G) is commuiztive, the commuuator.of uny pa:r of
-clemem.s 6E.G Yes in Z(6),and an easy induclion argument shotys that

O T L TN e RS

Therefore. (xy)# = xP 1'9 and 80 ¥ W+ 2P LG (36 3 homomuorphism, It jinage Is
contained in Z{F), and so its keinel s ocder at léast %, Since N éontains only p—1
vlements ot’arder p.Wesee that there exssts gnglementh of order. proiiside N . Hence G =
{a,‘r b)Y me Cp2.4 Cp, and it Femuing to observe (3.10) that the nontrivial hemumisrphisms
Cp— Aut{C 2} Cpx Cpy giveisomorphic groups,

Thus. wp' 10 jsomorphism, the only nohcomimutative groups-of onder. g% are those
constnicted in (3,14, 3,15},

5.13 (GROUPS OF ORDER 2p", 4p", AND 80", p 0DD) Lot G be ugrodp ot‘ordcrz”'p N
{<nr<3, panodd piime. § 20 We shall show that & is nit siniple, Ler P be.o. Sylow
F-subgroupand Iet ¥ = Ng(#), 50 thals,, ={G: N}

From Sylow 11, we know that s;[27, p=LpFL2p+i,
I not, thete are bwo casesta cangider:

W sp =1, P s nemal.

(i} sp=dund p =3, or
(). rp=8andp =7,

In the first case, the action by confugation of & on the set of Sylow 3-subgroups’ defines
4 homomerphism G —+ Sy, which, if G i simple, must be Injéctive. Therefore {G ¢ 4L,
and s0 71 = I; we have (G 1 1) = 2753, Now the Sylow. 2-subgroup }ias index 3, and 50 we
have 3 homomorphlsm G > §3. Tts kermiel is-a nontrivial dérmal subgrotp of &,

It thie second vase, thie sarme argurient shows that (G 2 T)}8Y, andse.n = § wgain. Thus
(% : 1} = 56 anil 7 == 8. Therefore ¢ hav 48 elements of order 7, and so there van be only
onie Sylow 2- -subgroup, which must therefore be nommal,

Note that groups of order py’, p,g primes, P < ¢ are nol simple, because Exerelse d-5
shows that the Sylow g-subgroup is normak, An cxamifialion of cases now reveals that As i
the smailest noncyclic simple group.,

5.19 {GROUPS.OF GRDER 60} Let & bea simple group of onder 60, We shall show that G
Is isomorphic 10 A5, Let P be o Sylow 2-subgroup and N = Ng(f’], 50 thit 55 = {& 1 N).
According to the $ylow theorems, 55 = 1,35, or 15,

(a) The ¢ase 52 = L is :mposﬁb]e, becavse P would be.normal (see 5.8),
(b} The pase s» = 3 is impossible, becauss the kemel of G — S)rm(Gz'N} would bie o
nontrivial normal subgoup of G,

{e) Inthe case $3 = §, we gel an inclusion G e S}m{G;’N) S5, which realizes G as

4 subgroup of index 2 in S5, but we saw in (4:37) thay, for w2 5; 4, s the only subgroup of.

index 2 in S,,
(G} Inthe case 12 = 15, a counting. argurment {usmg that 5 = 6)-show that there exist
lwo Sonw Z-subgrovps A anid (0 intersecting in 2 group of order 2. The normalizer N

’E_lquwu]aj;_ly,_ﬂac waval niap & s Syni(G/ Ny,



CHAPTER

Subnormal Series; Solvable and
Nilpotent Groups

Subniormal Seéries.
Lei & be-agroup. A chain of subgeoups
G2 Gy DGy 323 G DG D - 3 Gy = {1},

15 called wsubrormal serdes if §)-1s nommal in G- for every |, and 1I is catled a mormal
series i€ G; is norotal i G-farevery §.' The series is snid io be witheit repetitions if all the
inchisions F—; D G, are proper (1 2. G;..] # G} Then ' is citled the- -fength of the. series,
The quaticil geoups Giq /G are called the grofient torfactor) groups of the series.

A-subnormal series Is said 1o be'a composition series I it has no proper-refinement that
is also 2 subnormal series: In other words, it is a composition scries if Gy is muxinal amang
the: proper normal subgroups Gi- for eacti /. Thus:a subniprmal series 1s a Compusition
seties if and only if.cach quotient group is simple and nontrivial, thously‘ every finjte
Erbup has 7 composition serfes (usually many):. choose Gy to be 2 maximal proper normal
subgroup-of G then choose. G2 to Ye 5 maximal proper. normal subgroup of Gy, etc.. An
infinitc group may or may not havea finlte composition serids.

Nete that from a subnormial series

G= Gub. G], Brees

B Gre Gy w0 Gy = {1}

we obrain a sequence 6f exacl sequences
1+ Grag = Gn;:_z —+ G‘n--z_fGn...; —+1

Lo Gy = G =+ G f Gy — L

l—>G| —»Gu—hG_u',"G], =1

Thes G is built up ont 'of the qualients Go/ Gy, G1/Cz....;Op-1 by forming succissive
extensions. In particulae, since every. fifite grnup has & eomposition series, it can be regarded

TRevte arbors. weile "nonmat sedes™ where we wrile 1 series™ and *'i series” where we

wite “mornul serlés”.

Case Il Hy # Gy. Bécause G afid Hy are-both normal in ¢, the product G Hy isa
nomal subgroup of G. Ti properly cdntdliis both G and: Hy. which afi maximal normal
subgrotips of G, and vo G H] =, Thérelone

'GfG|--—JG|H1fG]::H|f'GiﬂH1 {see 1465

Sinilarly G/Hy o2 Gy fG) 01 Hy. Lt Ko = Gy Hyiheri Ky is.a maximal riormal sebyroup
i both Gy dnd Ay, dnd

G/ Gy = Hh [Ka, Gle GifKa. (26}

‘Clivose a chmposition series

Kot Kapo b Ky,

We have the picturet’

0 o G-. L )

AN
oA

Hy v Hpp -

Gy
v Ky

> Hp

Oin.applying the-induction hypothesis to G ', and H and their camposifian serics in the

dtagram, we lknd that

Quotients(G - G1# Gab ) = {G/G1,G1/62,G2/ Gy} (definition)
m (GGG K KafKa,:id (induction)
o~ [H K2 GIEG Ko Ky § Capply (26))
s {G}'HhHu’KzuKz/Kamv} (icirder)
~ {G;‘fh JH1fHa. Hsz;. Lod o tindnétioin)
= Quotients{G o Hy o Hye). (definttion).

[Note that the théorem applied fo 2 cyclic group Cpm implies that the factorization of én
integer into a product of prinies is unique,

"REMARK 6.3 (2) There are-infinite groups having finite composition sedes {there are even
infinite simple groups). For such a group; Jet £{G) be the minimum lengih of & composition
scries, Then the Jordan-Hglder theorem extends to shdw -that all composition Sexies haie
fenjith, d(G} and favé: isbmerphiv: gimtient. BIOUDE, The same. pmofworks except that you
have t6i use induction gn 4G} Instead of |G} and verify that 2-nocmal subyrop ofit. BTOUR
with.a finite composition series: also has-a fintte composition series {Exercise 6-1%;

(b} Analogues of he Jordan-Hélder theorem hald in many situations, bul oot in alt
sititaions, Consider, for éxample, the category of finkely gcr’lcralcd projeclive modules aver
2 Dedekind doiain K. Every.such module is. ﬁomarphic toafinité direct sum o4 BB
of aofzero idéals in.R, and two modules oy @ - @8, and by @B bg ure isomorphic if and
only il = 5 and gy 0, equals liy -+ by in theddeat class group of R IF a is 1 donprinéipt
jdeal in R and f is.such that abis principal, then. a @b = 8%, and so £2 has.composition
serjes. witk distinet-quotients {nb}and R, R}.

The quoticnts of 2 Somposition series-dre somatimes ealled-eompasition factars..

as-being brilt up out of simple groups. The Jordan-Hidder theorem, which is the main opic
of this seetian, says that lhese simple groups are indepenilent of the somposition series fup
to order and isomorphismy.
N that if & hog a suboofreid Series G = GopGr b0 Gy = {1} then
(G:D =[], Gumr:G =[], _, ,Gimi/G: i 1),
EXAMOLE 6.1 (a) The s_;.{rmnctric group Sy has-a composition series
Sap A1

with quetients €z, €5,
{b) The symmietrie group Sa'has a composilion series.

8o Aap V5 {1324} > 1,

where ¥ = U2 x.£z consists of all-elements of order 2 iit A4 (see:d.52): The quotients are
G, 63, G2 G ) ) )
c} Any maximai flag in 5
quitients are Cp, Cp,ou i Op.
-{d} Consider the cyelic group €y == {a}. Forany factorization mt = py -

5 p i prite, i & compokifiah series, {15 1angths ) and its

oy ofr into a

" product of primes (potnecessarily distinct), there is 4 composition sefics-

G b L & T a
! ET v
1 I f

@ @y (@)

The length is 7.-and the quotients are Cpy. Cazr- o Cp-
(€Y Suppose G is a direet product of simplé groups,
composition series

G =5 Hy %% Hy. The G bas a

G Hypttreex 'H-, by X Hr Bvee

of length r-dnd with quolients Hy, Ha...., Hy. Now thal forany permatation a of {1,2..... 7}
then ig 'm(:lhcr compotition series with quotlcm% Hatin H,,m, cenHatpys

{f} We saw in- @37y hat fors > &, the only normal subgroups of 8y, are 5., 4n. {1},
and in (4.33) that 4, is simple. Hence S & Ay 1} i the ondy composition sctics: for S

THEOREM 6.2 (JORDAN-HELDER) Lot G bed finitcgronp. If

G="GowGyp -Gy ={1}
G=Hyo Hypiov Hy = {1}

dre twpreomposition serfes for (7, then 5 = 1 and there is 2 permutation o of {1.2.....5}
such that G/ Gegn % Hyln/ Hagyer-
Pkoor We use induction pu the order of G..

“Case I: Hy = 1. In this case, we have two cormposition series for G T 1o which we can.
apply the induction hypothesis.

*ordun shwed that camesponding qumlents had the safe. order; ind Holder thit they were iiotiofphls,
Solvable groups

A subnomial series whose quotient-groups are all commutative is cafied o salvable series.
A group is selvable {or solubleyif it has a solvable sexies, Allernatively, we-can say thata
group is solvable At can be -bi_:__{ajricd by forining successive extensions of commautative.
groups. Since 4 coinmuiative group it simple if and only if 1 i% cyclic-of prime order, we seg
that'G is salvable if and oaly if for' ene (hence every) compagsition serdes thie guntiems dre afi
cyelic groups of prime order,

Every:comnmutative group is solvalife, as is every dihedra) group, The results in Chaper.
5-shiwy that every gioup of ordér < 60 is solvable. By contrast, a nencommiutative simple
BITUD, &t Ap forn > 5l not be- sol»:lhh:,

THEQREM 6.4 (_FEIT—'THOMPSON)_ Every. tinite Zroup of vdd-order is solvable.}

PROOF. The proof oceupies-aa entite ssue of the Pagific fournal of Mathematics (Feit and
Thonmpson ! 963_'), . o

‘In other words, every. finile group is either golvable or-contains an élement of order Z.-
For the role-this theorenr glayed in (he classification of the finite simple proups. see p--53.
For a more recerit look at the Feit-Thompson theorer, see Glashenman 1989,

EXAMPLE 6.5 Censitlerthe subgroaps £ = i(; *)} aned & = ; (E] 1)} of GLa{ #1.
some field F'. Then.t is 2 normat- subgroup of B, and B/U o PR R (_I‘ +3
Hence 8 15 solvable.

PROMOSITION 6.6 {a) Every subgroup and every quonenr group of 4 solvable group is
sofvable.
(b An extension of solvable groups is selvable.
PROOF; {0} Let G5 Gy e vov (i, Bt 2 s0bvable Series (r G and let H Ye a subgroup of G.
The homanierphism ) -
2= xGipnt HOG =0 f Gy

bas kernel {H N G} N Giga = H 0G40 Therefare, H.11G; ¢ i5-a normal subgroup of
H 1G; and the quotient H NG, /H NGy injects into G;fGray. which is comimuiative,
We have: shnwn that

Hoe H G i 0,
isa sul\leh[é series for H: ) ) _

‘Let. G be aquotient grotp of G und let G; be the image.of Gy inG. Then

GoGyr Gy =fl)

Aarnside (1897, p 3793 wrane
Nesiinple Eroup 4 af add ordieis ol prasént kiswn Lo £xist, An quug,atwn as w the gxistenie
£ fe-ciienee L] such groups would undisbtedby Foad, wistever e « ion niight be. o
resalis of i AL may e ree ded 1o i.hcfn'.':ldcr'as_wc_]'l'wnnh bis.aitention, Also,
there 3z no known' simple group whose order contains fewer than three different primes, . ..

Significant progress in the firsl problem was aot made until Suzuki, M. The wotexiseence if a certtn tpe of
siiaple it of finite order 1957, However, the second problem was solved by Durnshle himeelT, wh proved
sy, chiakaceeys thit any pronp whise orbes comains fewer tun three differen prinesis solvabls fee Alpera’
wnd Belk 1995, p. [82).



isa solvably seties for &, PROPOSITION 6.9 The commintaior subjgronp G is-» characterfstic subgroup of G it is the
'(k_r) Let ¥ bo a normal subgroup of G, and tet G = G/N. We have to shiow thatif i swallest nomal subgroup of G such 1 G/ & is commutative,
and &7 upe solvable, then so alsods G Let PROOF. An wutomorphism e of G- maps the getigrating set fur G info G*, and hence mis
— - . G'into G*, Since this is true for all.antemorphisms,of &, /G is chumcteristic, )
Go o oe Gy ={l} " Write g s # for the tomomorphism g 1 gG': G~ G/ G, Then [7.4) = f2.A), whith

¥ Nyoeorn Nog = 11} is | because fy. k] & G'. Henee [£.0] = 1 forall 2, f1.¢ G/ 6, which shows that G/6% 1s

) _ . N _ cammulglive, _ ) .
be solvable series for G-and N, and let G; e tHe Javerse Image of & in 67 Then GifGipy 2 Let-N bea setond nonmat sibgroup of G suchithiat G/ is commuiative, Then {whp i
GifGryy (s6e 148, and o in G/¥, and so lg. i} & N, Since these elemiests genenate G N 267 0

s e 1 '=‘_ ¥ . Frefa. . . . . - L. - . N H
G Gro o Gpl= NYb Nypovep Moy For i 2 5, An is the smailest normal subgroufs of 5, giving.a comutative quotient,

Henice (8,) = Ay. . ] )

The second derived subgroug of G:is (G'Y'; the third is G = {(G"Y: and 50 of. Since
u characteristic subgronp of #characteristic-subgroup i chirscteristic 13.7a), each detived
group G i 2 characteristic subgroup.of ¢. Hence we obtin 3 torial Serfes

‘i 8 salvable serics for 3,

COROLLARY 6.7 A finkie p-grobip is sclvable.

PROOF, Wo useinduction on the orderthe group &. According to (4.15), the.centre Z{G} . )

of G is nostrivial. and 6 the induction hypothesis imples that G/Z{G) is solvable. Because GoGM W,

Z{G) is commuatative. (b} of the proposition shows that G isselvable.. o ) . ) .
which is called the derived serfes of G. Foy example, when i §, the derived series of Sn i

Let © be-a group. Recall iyt the commutator of ayelis S Ay D Ap D A D,

P =l —F ] - - . . .
Lept=myx™ly™ = ay (e PROPOSITION 6.10 A group G is-sohvable if and oinly if its & th derived sugroup G = |
Thus forsome k. '
i fr.yt=1 e gy = yx, Proor, 1F G = 1, then the derived series is a solvable serics for &, Conversely, let
and G is commutative if and nnly-i.l."e_ver_y commutator-equals J. G =Gy»Gro Capecn Ge |

?hA;TESBVFNM{ ﬁni;f" ﬂ@:ﬂsion&l vector space ¥ over a field k-and aty moximal be'a solvable series for . Because G/ Gy is commutative, Gy >.G’, -‘Now GG s
ag fa= V), m=farng 0V the group: subgroup of G, and from.
BUF)= {o e Am(V) falV)) C ¥ all Lo
o) { ¢ )E ( j)e v Al it GJ;’G’F!G;"-{G*GL"G:; TG G
is solvable, Indeed, let U F) be the group defined in Exinple 5.10. Then B{F )/ U{F}is
commutative, and, whea k = Fp, U{F) is a_g-group. Thispraves that B(F) is solvable We S€€ that
whenk =%y, and it the genieral case oné defines sibgriups By 2°Bj o+-- of BIF) witti G/ Gy communnive == 66 N6, tommutative ==, 6" C G'NG,C Gs.

Bi=lde BF) jelVp) € Vit all'j} Cominuing in the fashion, we find that G ¢ G; forali 4, and honce 6% = 1, =

andd nates that the commutator of rwe elements.of B; lies n. Bryr. ) o
’ Thus, & solvable: group G has.a camanical sobvible sedies, namnely e derved series, in
which:il| 1R Zrotps o Al &. The prott of the proposition shows tal the derived:
series is the shorest solvable series for-G. frs Jength s called the sofvable dength of 6.

For any homomorphism @67 — H -

. = I B S ‘ . X .

pllx 1) = plxpaT vy = fe{x), 6 (p)]. -ASIDE6.T} Not every ctemeiit of the ¢ beroup of & pronp is itself 2 commutator, bt
the smallest groups where fhis orcurs hive order 96, This wag shown by computer search-thiough
the Hbraries of smal) groups. Sce also imiod4269, ’

i, ¢ maps the commutator of %, y to the commutator bf #0x}.@{y). Inparticular, wé see’
that if. # is commutalive, then ¢ maps Al commurators i 610 1:

The.groug G = G4 generated by the commutatars. in-G s called the commutator or
Jirst derived subgroup of G,

Nilpotent groups PROPUSITION 6.15 A group G is rilpotent of class = m if and only if

Lat.&F be a group. Recall that we write Z{G) for the centre'of G. Let Z2{G) € § be the L lgrgad sl msa] = 1
subgroup of G corresponding to Z(G/Z{GY C G/ Z((), Thus )
S ; : foral Bl Bmp1 € G

— . g :
_ EEZHE) = [g.5] e Z(G) forall x € G. PROOF. Recall, g € Z4G) <= [,) € 2 {G) Torall £ € G.
Continuing in this fashion, we get a sequence of subgroups (tascending couiral series) Asshime 7 is nilpotent of class < m; then

- . 2 . . .
{CZ2(G) 2! (&) © Ie] =ZM(G) = [21.22) QZM-I(G) gy g26G6

where o = . e gl e Z™HG sl pragnma € 6
gEZH6) < [g.x] £ 2 HE) for il ¥ 6 G, > st achedd & 27O all ez

If Z”“'('c_;} = (7 for some #1, thén G 1s sald o benilparesnt, and the srnallesi such ar is called .

the {nilpoteiicy) clnss of G, For example, alt fitite p-groups-are nilpotent {appky 4.16);

= (1182 82), 85k ] € ZUGY AL, . g € G

Ority the grioup {1} hes £lass O; and the. proups.oficless | are exacilyihe commutative. | = [“'E[g vEzhgal . pmer] =1l g1, 0 gm & ;.
groups. A group G.1s of class 2if-and only-if G/ Z{G} 1§ comnmtaivg —such a group is : ” ’
aid to'be metaticlian, ' S Furthe convérse, let g1 £ G. Then
EXAMPLE 6.12- (a) A:nilpotent gioup.is obviausty solvabie, but the converse is false; For {L-Her z2b g5l gl gmpr} = 1 forall g1.22, - Emel €6 )
ekamiple, for a ficld F,Jet ==v g gl gah o g € 2060 forall g100gin € 6
_{fa B P
B"{(ﬂ c:) whoel, an;&ﬂ}._ i
Thew Z(B)== {n] | n # 0}, and the'eentee of B/ Z{BYistrividl, Therefore-B/ Z{.B) is not =% 1€ Z™G) g € 6. &
nilpotent. bt we Saw if (6:5) tiat it 1x solvabic, ] _
) {fE = » 10 An extension of Dilpotent groups néed natbe nilpotent; i.e.,
MBI Thegroip G =4 |8 1 * |} is metabelian: ity centre 54 [0 1 0 . ahd ’ ] ) _
N \& 0 I a0 if) N and G/ N nilpoient 5 G nilpotent, 127
G/Z{GYis commutative, -

(c} Any nonabalise group G of drder p'ﬁlisjmemﬁcli;n‘._ In fact, G/ = Z({G hits orgr p For example; the's.i}bg_rﬂ?up'i_{ of thie jair!!.taii ‘B in Exutaples 6.5 and 6,17 is commutative and’
fsce 3.17% and &/ G s comnimtative (4.18). In particular, ihe quaternion and dihédiraligroups B/ U is:eommutative, mt & is not nilpotent. .
of order §, @ wnd Dy, are metsbelian. The dihedral group Da» is.nilpoient of class 1 — this Howsver, the implication (27) hotds when WV {s-contained in thé-centre of &, Tn fact we
can be proved by inducion, using that Z(Da«) has arder 2, and Dan /Z{Dyn) & Doy IF  Tive tic: following mose precise result,
it is net-apowsr.of 2; then £, is not nilpotent {use Theorem-6.18 below).. COROLLARY 6.46 For ariy subgroup N of the centee of G,
PROPOSITION'G.1 3 {2} A subgfoup of a'allpotent group is nilpotest.
(b} A gaclient'of a nilpotent group is nfipotent; ) - i
PROOF. (2) Lot H be 2 sbbgroup of a-nilpotent group 6. Clearly, Z(HY D Z(G) N H. PROOF Wiild o for the map G -+ G/N. Then
-Assimt (induetively)that Z'(I} 2 2 (G0 Hythen 2/ H) 5 ZIPHEY A H, beeavse

GfN nilpotept of ehuss m == G nilpotend ofcloss s 41,

(fork < 1) 2{LMlgv. g2b Rabooon ek &t ]} == Lllega. mgado sl s T B m ] = 1
he ZMHG) = ) € Z(GYall x €6 = [hx] € 2/ () all x & H. Al f1ie L1, € G Hence [ figy, g2), 831 i gl 1) € ¥ € Z{6). and 50
{6} Straightforward. a bodlggsl @ik gmpth gmaa) = L oll gy, gmyz € G. a

REMARK 6.14 Tt should be noled that if & is a subgroup of . then Z{ ‘mdy be bigger ) ]
than Z{ (). For exampte, the ventre of COROLLARY 6.17 A finjie p-group fs nifpotent.

a 0y s FROOF. We use induction on the erder of &, Betause Z{G) £ 1, G/ Z(G) nilpoteni, whick
B { (p 'b)f“”"* “} < BLatF), implies ihat G s nilpaten, ' N




Recall thiat an extension ¢ o
1T N o G o= e
is.contral i {0} < Z{G), Then:

the- m]pmcm groups are those that can be: obrained from commutative groups! by
successive central extensions,

Contrast:,

Lhe solvatle groups are those that ean be-obiained front conmutative. groups. by
successive extensions {nor necessarily cemral).

THEOREM 618 A finite group is nilpotent if-and only.if it is equal to a'direct produict of its
Sylow subgroups.

FROOF, A direct product of nilpotent groups is obiiousky nifpetent, and o the “if” dircotion
follows from the preceding corollary. . For the-converse, let G be a finite nilpotent group.
Actording 16 (5,9) il suffices 1o prove that.all Sylow subgroups are normal. Let P be sugh s
subbmup of G, and let ¥ = Mg (P). The first lemnz below shows that Alg{N )= M, and

“the second then lmphcs that N = G, i, that. £ isnommal in G, o

LEMMA 6.19 Let P be a Syfow p-subgraup of a finite grovp &, For dity subgronp i1 of G
containing Ng{P), we hve No(H) = H.
PrOGYE. Lelg & N(;(H). sovaLgH g™ = M. Then H2 ng"‘ P, which i§ a Sylow
prsubgroup of H. By Sylow WL LP'h—! = P.forsome b & H;nd so- thg‘“lh‘“’ <P
Hence hge NG(PJ CHand so g & i Ja
LEMMA 6:20: Lat # ‘be proper sbgroup of a finiie nilpotent giowp G: then H $ N (H).
Broor. ‘The siaiement is obviously true for commutitive groups, and 5o we canagsiig
G 10 be noncommutative. “We-use induction on-the onder 6f G. Because G is nilpotent,
Z{G) # 1. Cenainly the eleinents of Z(G) normalize #.-and so if Z{G) & H.we have
H S Z(G)-H & Ng{HY). Thus we may suppose Z(G) < - Then the normalizer of # in
7 cnm:sponds under{1:47) 16 the orridlizer of B/ Z(G) in G/ Z(G ). and we £an apply
the induction hypothesis, 1

REMARK6.21 Fora finite ihelian group G e recover the fact thit & §s.a direct product of
ity’ p-primary subgroups.
PROPOSITION 6.22 (FRATTINI'S ARGUMENT) Let F- be 2 homuil sutigroup. of-u-finite

group G, and Jet P be's Sylow p-subgroup 6f H. Then G = \Ng( P}

PROOF. Let ¢ € &, Then gPg b gHg™d = H, anfl both g™ and P afe Sylow
pestbgroups.of H,-According to Sylow 11, there is an fr & A such that g#p™" = AiPh™1,
and i follows that AT € Ng{Pymi se g € A «Ng(P).

TRE(}‘REM':(!'\ZS A finite group is-nilpotent if and only it every maxtinil proper subgroug is
aormal.

Alimost everything we have priived for groups alio holds for groups with operators, In

particular. the Theorerms 1.45, 1.46, and § 47 Rbld for groups with operators; In' gach cuse,.

the praof iv the same. ay Belore exceptthat. adniissibiiity ust be checked:
‘Tsi5ORENM 6:26. For any admissible foinoniorphism y: G — G of 4-grodp, N HKei(y)
is an admissible normal subgroup.of G, Gy isan admnss:ble subgroup of G, and y factors

in & patoea) way into the composite of an adnvssible surjectiorn. an admissible. lmm:)mlusm,
and an admissible injection:

G GIN S HE)

THEGREM 6.27 Let & be a group with operators A; and lot H and: N be admissible

'_wbgroups with N pormal. ‘Then H.0ON is a hormal admifssible subgroup of H, HN

is"an admissible sui'lgmup of 6. and h(H N Ny RH v an admissiblo zmmorphiom
HIEON - HNIN.

THEOHREM 6,28 Lot @2 G — G bea sarfective sdmissible homomorphism of A-groups,

Under the ans-to-one. conespondem:e H o H beiweén i st of subj ups of ¢ containing
Ker{y) and thie sel of subgroups.of G fsee 1,47), adassible subaroips correspand 1o
admissible subgroups.

Let g A = Aw{G ) be-a groupy with A opecing. An admissible subnsrmal seriesfs a
chain ol ddmissible subgroups of G

GoGi DG DG

with each ; normal in Gi~y. Define simildrly an admissible composition sedes. The:

‘querients of an admissible. siboormal séries are:A-groups, and the quotients of an adnissible
‘compesition series are siniple A-groups, 1.6.., thiey have fio normal admissible subjroups
apart from the obvious ewo,

“The Jordan-Hélder theoren. continees to hold for 4- ~Broups. I this case the isomor-

phisms between thé corresponding quotients of two cnmpomton series are admissible, The'

proof is tHe samne 25 that of the original theorem, hedause it nses gy the momarp!mm

.thearems, which webave noted dlso hold for A-groups.

EXAMPLE .29 (a) Consider G with & acting by conjugation. In this.case an ddn‘us&lblc

-~ fubnormal series is aséyquenie of Subproups

G =Gy 0655625+ 2 Gs = {1},

with each G, narmal in G, i, 2 normal series. The zction. of G on G;. by conjupalion
passes (o the qLioﬁcnt to give an action of G on G;/Gir1. Theq aticnts of twe admissib]

composition seriey-drt isomorphic as G-groups.

(BY Condider G with 4 = Au{G)} as operator group. Tn.this Case; an admissible subnor

.mal series is. sequence

G= Gu‘JG]:JG;:J“‘:)G, i

with'each G; 73 characteristic subgroup of G. and the guoticnts of two ndmissible composition
seried are isomorphi& as Aut{G)-groups,

PROGGFE. ‘We-saw.in-Lemima 6.20 that for any proper subgroup & .of a nilpotent group &,
A & Ng{H). Hence. ) o

. s H mazimal = Ng(d)=10
i.e. M isnnrmalin G.

Conversely, supposé every maximal propersubgroup of G is hormal. We shall clieck the
_condifion of Theoearh £.18, Thus, let P be 2 Sylaw p-subgroup of G IE Prisnot nurmal i
., then there exists-a maximal proper subgroup & of & containing M5 {P) ‘Being max;mnl
H is dormal, and so Fratini’s arguinent shows Uhat & = B - Ng{ £} = H — coitradicton.q

ASIpE 624 Consider 4 nilpotent group-G of cluss 20
1% Avr G e Bew | A, Bropmmiutative,  AC Z{G).

Tnkmgmi-[imm-uﬁn induces a map /\ "B — 4 (and evéry such map oceurs for sonwe exiensien). The
[yrnc nf this map.is the colpmutitos subjroup and the image-¢f the pure tensord 6 A b is the set
‘of actual commstatars, This can e used L give exabiples of groups whose commumator. qubgruup
duesn 1 conmsr. enuml} af commumnrﬁ (Torstén Ekedahl, mod4265).

Groups with operators

Recalt that the'set Aul(tFy of .’lulﬁmorp'hlsr:ns of 2 growp G i3 again 2 group. Lot Abe a gm'up
A puir (G.p). consisting. of a graup G topether wilh 2 homomorphism x4 — Aul{G) is
called an A-group: or .15 said 1o have 4 s a group of operators,
Let G he an’ A-group, and write ®x for pladx. Then
tay. {ﬂﬁ)x = ﬂ(ﬂx)
b kyy=ox.- %y
{©) txaix

(. Is 2 homomorphism),
(ppler) is o homoniorphisn):

A{¢ is'a homomorphism}.
Conversely, i (e, ) %x LA X G = G satisfying. {a}, (b}, (L) arfses from 1 homemer-
phIsm A ~+Aut{G ], Conditions () and o) show that x w2 x is inverse 1o ¥ b+ ="y and
<502 b % is a bijection G — G. Conditian (b then shows that it 15 an dutomorplsm of G.
f‘mully, (1) :.]wws that the map ga(r:!} (4 Fs Talisa h(:marnarphlsm A Aul(G;

Let Gbea wiaitp with operators A. A-subgroup A of G Ts adm:ss:bie ot A-frvariant if

seH == Yy e M, alla e d.

An intesection of admissible groups is admissible. If H'is admissible; so also are iis

norodlizer Nz { A and cemralizer Cg {7,
An A=) rpltisu (ov admissible &

y:G =+ G' suchabint p(%g) =

phisui}of A-groupa is 2 homomorphism
“yig) forallae & A, g€ G.

EXAMPLEG.25 (2)'A group’G can bé regarded s & group with {1} as group of operators.
fn this case all subgroups and homomosphisms are aduiissible, and s0.the theory of groups
with opesnlors inclides the theory of groups withonl aperators.
{b).Consider'G acting ap irsell by conjugation, ie. consider G together with the..
hamomaiphisim
g g G —+ AutiGh
T thig case, the: admissible subgroups are the normal sisronps.

&b Consider G with A = Aut{G) as Eroup of operators. In this case, the adriissible
subprous are the characleristic subgroups.

Krull-Schmidf théorem.
A group G is-indgeomposable it G # 1 and G is not isontorphic 1o & direct product of two
nontrivial grougs, be., i

GuHxH = H=lo# =1
EXAMPLE 6,30 {2} A simple gronp-is indecomposable, bul.an mdcmmpmable group need
ot be-simple: if may have.a niemal subgroup, For example. 53 is'indecomposable but has-

3 a5 a noyma! subgroup:
{b) A Binité sémmutntive group is indecorhposable if and anly if it is cyclic of prime-

powver order

OF course, this is obvious from the classification; butit is pet difficult 16 proveit directly.
Let G be eyclic-of order p*, and suppose that G-= H . F". Then H and H'-mast be
p-groups, and they can't both be killed by Pt = e T foltows that one must be cyelic
of order p*, and that the- othcr s wivial. Convorscly, suppose that G is.commutative and.
indecbmposable. Since every finite {:Dmmu_t:m\c_ Eroup i (obvmmiy} a diree! privduct of
p-groups with 7 running ovér the primes, G ié 1 p-geoup, Tl g ié an elémiént.of G pf highesi
arder, one shows thal {g) is o-dircet factor of G, G-=¢ {fr) 2 £, which i  conlradiction;

{c) Every finite group can be written as a direct product of indecomposable -groups
(Gbvicusly), a ' .

THEGREM 6.3 (KRU_LL»S_CHMi_I]ff‘) HSuppase thiit G is o dirgef product of indedompos-
able-subgroups G, ... ; Gy and of indecomposiible subgroups H1..... H:

Gy weenb, Go Hixo-XH.

Then s = f,and there is are- mdcxmg such that Gy o Hi. Moreoven, given v, We.can dprange
the numbering so that-

GGy e ) G Mgy e H
‘BROOF. ‘See Ronman 1995, 6,36, o

EXAMPLE 6.32 Let G = ¥ % Fp. and thiink of it as a twio-dimerisiénal vector space over
Fp. Lot

Gi={LO., Gz ={0.0% Hi={LOh =~
Then'G = Gy.x Ga, G = Hy k. Hz, G = Gy % Ha.

REMARK §.33 (a) The Krull-Schimidt theorein holds alsotor aninfitite group-provided it
satisfies botl chain conditions.on subgroups, Le:, ascending and descending sequences of
subgroups of G became stationary. )

(b} The Krull- Schmidt theorém- ulso helds; for proups with operaldés. For exampie,
lel Auli ) Dpcmic an G: then the subgroups in the staiement of the theorem will ail be
-characiedstic.

(&) Whenapplicdio 4 Anjle-abelian group, the iheoreny shows that the groups C, in a
decanmmumn G =Gy R X (,m, with &iich p17 % prime pmm:rarc uniguely di.lcnmnnd
up o isomerphism {and nrdcnng}‘

A5uictly. this _s_huuh_l bz c;ﬂ_ici.! the Wcs.ldui'bl.l_rﬁfl'{_unuk'-S:_'hmiik-Kfull-Qgc I!z_n:'aiuﬁ\-—vx_u_: the Wikipedia
entry for “Krull-Schmidl thenrem”,



Exercises
6-1" Let & be 2 sroup {not necessatily ﬁnile).with a linite composition setles.
G256 20, =1,
and fet N'be & normal subgroup of G, Show-ihat
N =NOG N NG DD NGy =1

bedemes a composition series for N once tho sepetitions have been omitted,

62 If Gy and Gy are groups such that G} ~ G4 and G /(] & G2/ G4, anc Gy and Go
necessatily wumnrph:c" {Here’ denotes lhc commutator subgroup,).

CHAPTER

Representations of Finite Groups

Throughont this chaptes, € is @ finite geoup and F 35 o field. Al vector $paces are finite
dimensionat. )

Ap F-algebraisaring 4 conlaining-F in its centre ind finite dimensional as an F-veripr
space. We do notassume A 1o be conunutative; for example, A could bie the matddx algebra
M,(F} Letey,...,en hedbasis Tor 4 fs sn F-vectar space; then €187 = E:kaﬁekforsume
af_, € £, called the-stricture. constanes of 4 relative to the basis (e Ji: once-a basis has been
-chusen, the algebra A 75 uniquely determined hy ity-strlickure constants.

ANl A-modules are fnite dimensinial when Tegarded as. F-vector spaces. For an A-
rhodide V. ¥ dedotes the direét sum of #7 copies of ¥,

The apposite: A of an, F»algchm A is the same F-algebra as A but with the muitipli-
cation reversed, i.e., A = {A, +,} witha # b =ha.ln ofher wotds, there is a onc-to-one”
correspondence 2 <+ a'i4 <« A which.is an isomoiphisnt of F-véctur spaces and has the:
property thit a'h’ = {ha)".

An A-module M s simple it i ts.nonzers-and contains o submedules except 0 and M,
and itis semmmpfc if itds xsomorphm to a direct sumof* simple modules.

Matrix representations

A atylx representatidn gf degree wof Gover Fisa hnmnmorphlsrn G->GLa(F) The
representation is sald lo be faithiful if the homememphism is injective, Thus a fiithful
representation dentifies & with g group of # » x matrices.

BxampLL. .1 (o) There is a repiesentation § — Gla(€).of the quaternion group Q@ =
{a.b) sending & to (Y,‘?...l. ’/:T) dnd b 1o (9 §). In fact. that is how we originally defined
£in (L) .

(b} Let G = S,. Far cach 5 '€ 8y, let {(¢) be the matrix obiained from the idontity
matrix by using o 10 permule the rows, Then, forany 7 %7t matrix 4, J (o)A is obtained
from A by using o0 permute the riws. In particular, 7 (r:r)! (o'} = Hora), and 50 0 = {5}
i8 & represemation Bf Sy Clearly, it is fuithful. As svery finite group embeds into.5), for
some i (Cayley's theorem, see 1.72), this éhows that every ﬁmte group has a Faithful matrix
representation.

() Let G = Cp == {o). If F comams amth rootof {, sayé’ then there is rcpresentatmn
J S N - I S 2

sav ¥, Let G- GL(V) be-a linear representation ol 7, Then (01,)"

exactly #. if'n = p is prime-and F hias chareteristic p, thei X P —1 = (X — )R, and 56 1
i the only pthroot of } in £ . In this case, the represemation is trivinl, but there is a fanh.ﬁ.ti
repiesentation .
af 'H--( !
8

ASIDE Y2 Recall that the Bumgide pmbl:m asks whether every finitely generited growp with
findie edponent is fitite tsee p, 37). Bumside proved \hat the problem has a pasitive answer for
sibgeoups of GL, (), THerefore, no infinite finitely generarsd group with (lhile cxponent has a
Faithful representation gver €.

i):ﬂ"p - GLa{F).

Roots of 11in fields

«As the Jast example indicates, the representationsof a group over a field F depesid on the.

rools of §in the ficlid. Theuth rocts of 1 iiva field F forma suhgmup I (F‘} of F*, which

s eyehie (see i 56).

If the characieristic of 7 divides x, then jit {F}| < . Otherwise; X7 -1 has distingt
roots {2 muhipte root would have ro be 2 oot of its.derivative .Y 7=}, and e cany always
arrange that. ]yn(rjl = 1 by extending £ for nmmpic, hy- teplacing a subfield ¥ of I with
Fig] where £x= ¥ or by seplacing 7 with FLX, TG Xy where g {X) s an imeducible
factor o X" -1 not dividing X™ 1 fur ay proper divisor o of .

An glement u!‘nrder it in F* jscafled a primitive nih root of 1. To say ihal Fgantains a
primitive sith root of 1,4, weans at . {F¥1s o eyclie group of order i and that { generatés
it (and it implies that ejther # has characteristic 0 or ithas charaeteristic a pritie not.dividing

")

Linear representations

Recall (4.1} that we have defined the notion of 2 griup G aeting a'sel. When the setisan
F-vectorspace V. we sy that the setion is fimear if th friap

= Vo xes pn,

is linear for each g & G. Thei g hids inverse the lincar faap {g“l}y yand g bs gy G =
GLIV)isa homnmnrphtsm Thiss, Tromt & linear action of G on ¥, we bbtain a hemomor-
phism of groups & ~» GL(V}; conversely, every such homomorphism. defifies 4 lingar aclion
of G on V. We.call 2 homomerphism & - GL{Y') a finear represeitation of G on V. Netg
that a linear representation of G- on F? ig st a matrix represemation of digrez A,

EXAMPLE 7.3 (@) Lot G = Cpoae {e}, und assumeihat & cantaing a primitive nth root of i,
™)L =1, and 3o
the minimum polynontal of gy, divides 3" — 1. As X7\ Bias 12 distinet rools £7, .. g

In F, tlie vettor space ¥ decomposes into,a difest surm of eigenspaccs

Ve @Osfﬁk—l ¥, V}g frel {an = H’-’L

Conversely, overy such direct §um decompasition of G arises from-a representation of &.



(1) Lét & be a commiztative: group of expoient , and assunic that # dontains a primitive
nith foor 6F 1, Let

G¥ = Hom(G.F*) = HonlG, e { F))

To give representation of (F.on a vector space V- is the same as to pive a direct sum
décompasition
F o Y.
®xeﬁ\‘ v

Whet G is cyekie, this iy a restatément'of {2}, and the general casé (dllows easily (decompiie
¥ with respeet-to the.zetien ol drie, eyelic factor of G+ thien’ decompbse éach summanil with.
redgiect to the action of a second cyclic Factor of G and so onl.

Yy YiveView = yiohd,

Maschke's theorem
Let G — GL(V) be 2 linear répresentation of & on an F -vector space V. A subspace W
of Vs said 10be G-mvarmm oW CWhitall .6 G, Au'F- linzar maprat V¥ -+ V' of
veetor spacésan whictl G acts lincardy is sald ta be vavanam if

wlge) = plo) frallp e Goos V.
Finally, s bilinear fornt. ¢V X ¥ = F i$ suld 1o be G-invariart if

Glzo. gt = b forallge GLvp'e V.

THEOREM 7.4 (MASCHYE) Lot G — GLIV) bea fineir representaticn of G, I the charic:

teristic of F toes not divide |G|, then every G-fnvariznt subspace W of ¥ has 2 G -invariant
complemeit, i.e; there exists a G <invariagt subspace W such-that ¥ = W W

Note that the theorem always:applies when F has charactecistic zero.

The.contlition gn.the characteristic iy certainly necessary: fet G = (o) be the cyclic
group of ardet p, where' g is'the chatacteristic of &, and let - sty on V= FZ i Lhc milrix
{é 1} {sep ? by “the subspace (n) is G- “invariant, and ils comp]cmcmary subspaccs are those
ol the form F{2), b #0: ione of them is G-invitriail, In fad, inovery oy ion of Cp

.An endomt

LEMMA 7.6 Forany symmemic bilitear fornyg on V,
= def . .
fluw) = Zgﬁs-r;b(gu_,.l,u.t)

is-a G.-invaridng gyaimeteic bilincar form on V..

PROOF, Thé form ¢.is pbviously bilinear and symnietric, and for gq € G;

laor. gow) £ .ZH G #lggou. ggow).

which equals 37, .5 di{g i, gt because, i 7:uns over G, so‘alse does g2 o

Unfertunately, we can't coriclude thatf is nondegeneraiz when g is {olherwise we couild
prove that aff FEG]-modules ard semistmple, with no téstriction on £ or &),

LEMMA 7.7 Let F = R. If ¢t Js a positive definite symmetric bilinear form o V', tlieir 50

“ulsois &

PROGE. If 6 1s fisitive definite, then for any nonzere w.in ¥,

v =) o Hevgih 20 :

This.complotés the proofl of Masclike's theotém when £ = R, becayse there cefainily

exist pasitive definite synimétric bilingar forins ¢ on V. A similar.angument using herroitiz
forms applies when £ = C (or, indéed, when F isany subfield of C},

ASIDE 7B - & répredontaion of Arivp G o1 4 real vegior apace ¥ 1§ unirery il there eaists a
G-invarisnt pmlu\'c definite syfimeiric bilinead fonn an V. Lemins 7.6 shows that c'\'i:ry unitary

“representation {8 semisimple, and Lemma ki shiows that-every real representation of a fi fite. group is

aritary.

PROOF OF MASCHKE™S THEOREM (GENERAL CASE)

yphisni'x of-an Feveclor ﬁpacc Vi called a profector if 7% = . The minimum.-

on A nonzero vertor space nver a figld of characteristic P there s a nonzera fixed vector.
Becnuse of the importance of the ideas:invelved, we present two proofs of Maschke's

thienfei.

PROOF-OF MASCHKE'S. THEOREM (CASE F =R oORC)

LEMNA 7.5 Lét &b be 2 symmeiric-hilinear form oit V', and fet W-pe asubspace of V. ¢

and W are G-invarfani, then so also is W M{u eV | gb{:u =0 for ali we Wi

PROGE. Letv. £ W andlet g € G. Forany w € W, ¢(u.= L) =¢{p ™ w,v) becanse qb it
G-invariant, and ¢(g‘“ w u) = () beeanse W is G-mvamnt 'I‘hls shows ﬂntgu €W,

Recall Fom linear atizebra that if ¢ s posifive definite, then ¥ = W-@ W, Therefore, in
arder to prove Maschke's theorem, it suffices (o show Ihat there exists.a G -invariant positive
definite: symmetric bilinear from-¢: V'x'V'— F.

Thiis makes sense beeatise |G} 1 € F*, dndivdefines an F-lineaf map 11 - ¥ Lat
ure W then g~ vi'e Woand so:

. i T I S

)= EE;TZg_eG s “”‘"|G[-Z_'gecé W=
The image of 7 is containgd i W, becanse Im(x) C W and W is. G-invariant, and so
#(0) iz oy E

for any -V, Thus, 7 1§ aprojecton, and (28 shows that Im (%)W, and hence Im{7) = W
Itremuins 1o show that' ¥ is G-invariant. Forgg e V

{28}

i

_ 1 - . 1 ] i
W(SQU)EEZFG.&'({?(H I_E_I’)_) =_80K;—E'ngg({,’n;3)(n(g gaud),

which equals go (u} because, as g und over G, so also docs gu"l B

The gronp-algebra; semisimplicity
‘The group algebra FIG] of:G is definied 1o be the F-vertor space. with bagis the ¢lements
of G.endowed with.the multiplicatjun'extending that on &, Thus,:

¢ anelement of F]G]is asum
o Iwo elements Eges cpgand
afl g, and
(Zg.EG c_gg_) (szG%‘ ) PIET LS SN B "x'l_c;.':'

A TFnear action

e Cg 6 eF,
#1665 €k ¥ of F [G} are cquai if and only if ey = cf, for

g g G x V=3

of G on an -F-vector space cklanﬂs-ilriii;_ue’ly 10 a action of F[G] on Vi

}:,gg gg.u Zm; ?x-?”.-.;:r[(;] xV =V

which makes V" into an -F[G]-module, "The submoilnles foc this action are exncily the.

(F-invariant subspaces.

Let G =+ GL(I] bé d liear cepresentition of G. When ¥ is simple (resp. bcmrslmplej
asun F{G}niviule, the représentation js usually said to be Irrediecible (resp, completely
redcible), However, T will cafl them simple (n.sp scmmmp[c} representations,

PROPOSTTION 7.9 I the-characteristic of F* does ot dm_u‘e |G|, thin every F[i#]-nodula
s a'dircet sim of simple submoditles. ) )

BROOF. Let ¥ be a F[Gl-medule. 16V is simple, then there-is nothing to prove. Otherwise,
it contains a nonzero proper submedule W, Accarding 1o.Maschke's ihearerm, V =¥ & W'
with- W’ an F [G] submodivle. 109 aind W are simple, then the praaf is complete: athérvwise,
wie-can ceitinug the:argiment, which terminates 4 o finie number of steps because ¥ has
finite dimeasion 45 an'F-veclor space. o

As we have oi:scrved, the linear vepresentations, of G can bercg_arded a8 FCl-modules.

Thus, fo ung d the linzar representations of &, we ned to understand the F{G)-
“modiles, aad for this we need to understand the structure of: the Fralgebra F |G} In the next
three sections we study F- algebrns and their modulés: in particular we prove the farnnus
Weddérburs thearems conceming F-algebras whose modles are alt semisimple.

pnlynommi of 4 prajector 7 divides X2 - X = X¢X - 1), and so ¥ Hecomposes into a divect
sum of eigenspaces.

. . Vptst) = {u.8 V{xv=0} = Ker{n}

V= Folr @ Vin), where | VilrY={v eV fav=vi=Im{x}

Canversely, a decomposition V' = V; i ¥} ‘arises from 4 projéctor. (g, sy} -+ (0, s
‘NRow suppose that & acts ][nearl)ron V. Ifa projectar s 1s G.-in\_f_ariam‘. then 1 () and

Valor) are obviously (-invariant, Thus, 1o prove the theorem it suffices 1o show that ¥ iz

“tie image of a G-invariant projectar 7.

We begin by choosing an £-linear projector 7 with.image W, which cerlainty-exists,
and. wemiodity 1t e oblain a F-invatant projector 7 with the sime image. For v e V. et

- . i A e (it
Flp) = I_CTIZS‘*G-"’ {wig ™).

Semisimple modnles

in this scetion, A 3san F-algebra,

PROPOSITION 7,10 Every A-moiltie V' admiis 2 Shimtion
V=W 2 V=0

sueh thatthe quitiemts Vi / Vi1 are simple A-modules. If
V=W W) 33 W= {0}

is 4 second such filteation, then s =

Vil Ve Wotidf Watiy 41 foralii.
PrOOF. Thisis 4 variant of the JordansH#lder theorem (6.2}, which can be proved by the
Same drganent: o

= ¢ dndd thére fs 8 permidtion o of {1, .5} sueh dhat

CoroLLARY 711 Suppuse

VaVi@goal=Ha oW
swith ail the A-mbdules 1 ahd"ﬂj simple, Then s =t and there it 4 pérmutation @ of
£1,...,57 sitch that ¥ = Wo),

PrOOF, Each decompqs'i_tioﬁ-dcﬁnes a fliration, o which the prapesition can he applizdi;

PROPOSITION 712 Let V be an A-module. JF Vis u sum of simple. submodules, say-
V =¥ 1 5. (the sum need por bé direct), then for any submodule W.of ¥, there is 2 subset.

J-of I such that ]
V= WI@EBKJ’ §

Puoow LetJ bemaximal among, the subsets of  soch the-suim 5 ¥ LJEJ 5y Is direct-
and WriSy =0. Iclaim that W+ 57 =V (heuce V is the ditect sum of W and the 5
with § & J.. Fot this, ll_sul'tlc_es to show that ¢ach.S; is co_mamed in W+ 5. Beeause 5;
is simple, § N (W 457} equals 5 oe 6. In theiest case, §; © W48y, and in the second
S; 018 =0 and W NSy +8)) = 0, conrradicting the- definition of F. o

COROLLARY 7.13 The fllowiig conditions aa un A-module ¥ are equiviient:
(@) ¥is s'enﬁsim;ﬂe:

(b} ¥ is a soaivof simple submudulés;
{c} évery subimoditle of ¥ lias a comple

PROGE. ‘The piroposition shows lliat (b} mplies (¢}, and the argament in the proof.of (7.9}
shaws that (¢} imiplies (a) 1t is-obvious thal (a) inaplies {b}. o

CoROLLARY .14 Sums, submodules, and guotienl modules of semisimple modales are .
semigirmple,

PROOE: Eath is 4 sui of simple rodules, o



-Simiple F -algebras and their modules
An Fealgebra 4 is said to besimple i it contains no o sided idesls exceptl.and 4. We
hall make frequent use of the following observatiors

The kernel of 2 homomorphism f14 - B'6f F-algebrasis aj- qdeal in A not
containing 15 ticrofore, §f 4 it simple, then f isinjective.

EXAMPLE 7.15 We consider the matrx algebra Mp{F).-Letey; be the matriy with { in the
(i d 1Y position and zeres elsewhere,

(a_] Let [ be atwo-sidéd ideal in M, (F). and suppose LhitJ confains & nonzero matrix’

M = {omy;) with, say, sy, %0, As
€iiy M epj = Mg

and e, ~AF ey 8 1, we see that 7 contains all the matrices 2 and 0 equals M, [F).
W have stown that 8, (F} is simple,

(v} For M, N & M,(F), the jth column of M. N is M- « Ny where ¥, is the Ftheotumn
of M. Fherefore; fur o given matrix N,

Np=0 = C (MENY =0

1 Ay #0 = (M- N}, can be arbitrary,
For 1= m et L(f 3 be the set of mattices whose fihreolumns sre zeto for f 7 f
and whose /th colump is arbitrary. Fer example, when st &= 4,

{29)

00 o« 0
. _jte 0 o= 0 .
L@ = B oo o] EHMEY
90 » ¢
Tt follows feom (25) that L{i} is 2 minimal Jeft idéalin My (F ). Note that Ma(F) 15 a

ditect sum ] )
My(FY=Li1)®- @ Liny
uof minimat Jeft ideals,

EXAMFPLE 7:16- An F-glgebra i said to b » divisien a.'gcbm it every | nonzéro clement.a
has an'inveérse, ie., there exists a § such thatah =1 = ba. Thus o division algebra satisfics
all the axtoms to be a fiald: except commutativity (and for this reason is sometimes called a
skew ﬁe!d) Clearly a division algebra has no nonzero proper 1deais ]eft Hght, o iwe-sided,
and so is simple, B

If & i5n division algebra, then the drgument in (7,154} shows that the-algebra M, (D} is
simple..

EXAMPLE7.17 Fora,b & F*, let H(a,b) bethe F-algpebra with basis 1, £ 7k (a5 an
Fvector space) and with the mulliplication-determined by

.2 :b;

"=, I'}z"—k:v—aj:i-

{sefk = lj = af ete.), Then Hiu. b)Y is an F-algebra, called 4 guaternion algebra over £,
For example, if F = R, then {113 is the usual quateriion algebra, One can show that
Hix,b) i cither a dmsmn algebraor it is isomorphic o M;(F} In particular, it is simple.

THEOREM 7.21 {DOUBLE CENTRALIZER THEOREM) Lot A be an F-algebra, and Jor V
bea farthfuf semisimple 4-module. Then C{C{A)) = A (centralizers taken in Endr{V¥)).

PRODF. Let D =C{d) and let § = C{D}. Cleardly A ¢ B. and he reverse incluston
Follows from the next lémma, when we-tike by, ..., Py 1 gencmte V¥ as 8 F-veolar space.c

vy € ¥ amd b2 B, there exists an o & A such that

avy = by, avp=buz. ..., avp=bu,.
PROOF, Wefifst prove this for i1 = L-Note that 4oy 45 an d-submodule of ¥, and so'(see
LN 13) thire exlsts an A-siibmodule ¥ of ¥ such that V = Ay & W, Letx: ¥ -+ V he the
mip (av;,m) R CLTRY)] (pro_;ecuun dilo. Avy ). s A-lincar, hence lies in D, and hasthe
property that zc{u} = o if and only if v Ay, Now

aefbu) = bl :-;_bv;,

Lemua 7,22 Forany uy....,

atd s, b'u; € Jup, s reqitdred.
“We tiow preve the general case, Lot W be Gie direct sum of # coples of ¥ with A acling
dlagonajly ie.,

afvy, o tm) = {avp,..00m), aed el

Thea W is again a semisimple A-module {7.14), The centralizer ol A.in End ¢ {W} consists
of the:matriees e bt fane Vi EEndF(V}, such that m;u} = {awf] foralla€ 4, ie.,
siuch that ¥y €:D-{cf, 7.32). Ir'other words, the centralizer of A'in Endp(d)is Ma{D). An
rgument a5 in Exnmpie 7.24ch), using the matrices (8] with & in the [jth position and
zeros eléewhere, shows thatihe centralizer of M,-,(D] In Endp(i¥) consists of the diagonal
matrices

[

0.0 - B}
with f:2 B. We now apply the case’ a =1 of the lemima to A, W, b, and the vectar
{U1,-. ¥q) o complete: the procl. o

THEDREM 7.23 Every siniple £ -algelra s isomorphic to M (D} for soma.n aml some
division F-algebra D.

PRQOF. Chouvge a'simplé A-module S; for example, any minimal left ideat of A, Thea 4
acts fubthiuity on 5, because the keonel of 4 -+ Endp(S) will be 2 two-sided ideal of 4 not
conlaining |, and hence is 0.

Let -0 be the centmlizer of A fo the F-alpebea Body {5) of F-lincar maps § -+ §.
Accardmg lo the double centralizer theorerh. (7.21), the. ccntraha:r of D i in End,-:(s) is.
Add, A= Endp(S) Schur's lemma (7.24 below) 1mphe< that U isa division algebra:
'Ehcrct‘ure 5 is a free D-module (7.18), say, & = D", and so- Endp{S) s M,f { [3°PPY (sec
7 19) a

LeMM4 7.24 (SCHUR'S LI:'\NM Forevery F-algebra A mnd simple A-module S, End 1 (5)
ASIDE 7,30 The. classilieation of (e isomorphism clusses of division alpebras over a-field F is

is a division algebry,
PRODE. Let y-be an A-lincar map & — 55 Then Ker{y) is an Awsubmodule of 8, and-so it
ieatther 8 arfl Trnihe firej cacp v-de Torm and i the camnm] ibie o Tommaarmbhicnn 5 a 31 o

7.18 Much of tinear: algebra does nok require that the field be ‘commutitive, For example,
the wsual’ ‘arguments show that's ﬁlutely geneiated mioditle 1 over a division algebra D has.a
basis, andithat ull bages- fiive the: same.mumbeor i of Eements — i is called the dimension of
V. Tn.partieular, ail finiiely generated -Dimesdules arefree,

7.18 Let i ie an F-algeben, and lst 4 A defiote 4 rwegarded as a left A-module. Right
multipfication 5 t+ xeon 44 by.an-element @ wof 4 is-an-4-linear endomerphisin of 4 A,
Moreover; every A-linear map g ,g.»i ~+ 44 Is of this [orm with a = w{l). Thus,

End,,(,;A_}_-z A (as Fovector spaces),
Let @, be the map x e xa. Then

6 9 Pa WU E galgar()) = bole') = o'a = #aral 13,

“amd so

EndglgA) 2 A fay Feaipebras),

More generally, o )
Endy{V) = 4
for any A-module ¥ (hat is-free of sank 1, o
Endy (V) 2 Mp (47
for any frée A-madule ¥ of tank # (cf. 7.32 below).
CENTRALIZERS
Let A be an F-subilgebra:of an' Fralgebra B. The contratizer 6f A in 8 is
CplAy=1{beB | ha=abforillacd}

It is again an Frsubalpebra of 8.

EXAMPLE 7,20 Inthe foIIowing examples, the centralizers are taken in A, {F).

() Let A be the set of scalar niatrices in My (F), ie, A= F o dn. Cieurly. ClA) =
M (F). .

) Let A = M,(F}. Then CiA} is the centre of My (£}, which we now complite, Let
“¢ip he the mawix with [ in the (¢, } }th position-and zeros elsewhere, sis thai

i f =1
LS EAR

Let o = {myy) & Mp{F). Theno'= Toi e and so ey = Bcttreim and
Epmtt = Y j@mieyy. I o is in the eéntre of My (F), then eeg, = epae, and so
ay=0farf #1, apy = 0for j m, and-gpp = A, Itfollows that the centre of
Mp(FY is setof scalar matrices F+ . Fhus ClA) = F- 1.

{cj Let A'be the'set of diagonal tatrices in M, (F}, In this case, C(4) =

Wotice that in all three cases, C{C{A)) = 4

. &,
Cigetn ={ "

MODULES OVER-SIMPLE F-ALGEPRAS

For any Fralgebra 4, the submodiles of 4.4 are the left ideals in A, and the simple submad-
ules of 1A are the minimalleft ideals.

PROPOSITION 7.25 Any hwo minimal Jeit idesls of a simple F :aigebra are isomorphic.as
Jeft A-modules, and 4 4 15 2 direct sum of its minima! left ideats,

PROOFR. After Theprem 7,23, we may asstume-that A= M,.,{D } Tor sone d:vnsiun algebra
D. We saw in (7.18) that the minintal left idedls in My (D) are-those of the form L({ ) })
Clearly A = 931-<j<nf-f{}” and gach L{{} }} is isomorphic to D with its natuinat 4ction
of M, fD) [t
TREOREM 7.26. Let A be.asfmple F-ilgebra, and Jet § be a simple A-module, Thien evéry
A-module i iséiviorphic to a directsum of coples of §.

PROGF, Lot Sybe 2 minimal loft-ideal of 4, The propusition shows that 4 A #s, 5§ for some
. Lt evaan, ey b nset of genecatons for Vas an A-module, The map

(a1 .-..,n,,)HEa,-e;

tealizes ¥ us a quotient of a diret stmof r coples of 4. and hence us.a quotient of wrSp.
Thus, ¥ is &.sum of simple sabmodules tach isomorphit to §g, and so Proposition 7,12
shows that V-2 mSp forsomie .. o

CoRoLLARY T:Z7 Let A bo a simplé’ F-algebra, Then any iwe simpie A-modules are
isomorphit, and sny-nvo A-modules Having the same-dimension over F' aré fsofiorphic.

Proor, Qbvious from the Theorem, n

CoroLLaRY 7.28 The integern in Theorem 7.23 is uniquely detérmined by A, and D is
wniquely de!cnmncd upr 10 fsomorphism.

PROOE. If A 7 My (D), then D =2 Endy(S) for any simple 4-modwle §. Thus, the state-.
ment folIowufmm Thedrém 7,26. o

CLASSIFICATION GF THE DIYISION ALGERRAS OVER £

After Theorer 7.23, to classily the simple-algebras over F. it femains to elassiy the division
algehras over F.

PROFOSITION 7,28 When F is aigcbrdfcai!y closed, the-only division slgebra over £ iz F
Iaelt,

PROOF. Let I be division algebra over F, For any o € D, the F-subalgebra Flelof D
generared by o ixa feld {because it is an intejral domuin of finite dégreé pver £, Therefore
wEF, 5

ane the most diffleult and mtcmstmg problems in algehrn and nutmber theory. For £ =R, the gnly-
division algebr is the usu.a] quarcmmu atgebra, For ¥ finite, the anly division algcbra with centes &

U owme ma



A tivision alpebra over F whose centre is F is'said 1w be centoif (forriedy pormal}. Brduet

shawed thag ihe set ofisomonihism classcs of cenmral diviston algebras wver 4 fietd form. i geoup,

cilled {by Hasse an:iNomherj 1hc8mnergmup of ilie field, The siaré ins the last paragrank

shaw that the Braver goups of algebraieally ¢losed ficlds and finite figlds are- zéro, and the Brager

group of T tias order 2. The- Brater groups of €@ and its finite extensions were computed by Aihen

Braver: Hasse, and Noether iz hic 193ts as a com.equence nf class field theoty,

Semisimple F-algebras and their modules

An F-algebr 4 is satd to-be semisiniple if every A-muaduleis sémisimple. Theorem 7.26
shows that simpte F-algebas-are semisimple, and Maschke's theorgm shoivs that:the group
algebra F[G]is se:nls1mplc when the-order of G is not divisible by the characterisiic of F
{see 7).

EXAMPLE 7.31 LutA bie 4 inite produét of simple. F-algébras. Then every-mipima! left
ileat ula simple faclor of 4 is a simple.A-submaodule of 5.4. Therefore; 44 Is a direet sum

of simple A-modules; and 50 is semlslmpie Since every 4- madulg 15 a quotient of adirect
sum of copies of 4.4, this shows that 4 is scmmmp}e

Before stating lﬁc main-result of this section, we xec':ﬂi same eiemcnmry' miouule theory.
732 LetA bean £ -.:ilgcbi‘a,- and consider modules

M =My @8 My
N =N @@ N

Lot a be'an A-linear map M — N. For x; € Mi. et

{0 D5 OO S (e i),

Then sy > ¥y is an A-lineur mip M; — A, drhich e denme ;. Thus, definés an mosc

mittix whose £ b coefficient is an A-linear map M, — A. Conversely, svery such matrix
(ors ) detines.an A-lnear map M — ¥ . namely.

X1 [ BRI 37 ST 1 W 51 a1ubxi) + b ixg)’
’ - . o C .
Xjprepan ooay e wpn FLX PR ga{u) 4ot miniag)
i : 1 : :

Xn/t B -t :"Xm;'.' vy L _“mt'(xl}‘*' ot By (i ),

Thus, we-see

Homa (M} 2= (Homa M5 N3Y, oy e 1o (0

Thé tenisor prodict 12 & ¢ B of twe tenisal shinple algebras aver. £ is.again 2 central sirple algebra; and
leence 5 isdmerghic to Ay {07 toe some. corim] simple algeho 8%, Define

D0 =[8"].

This product i§ aséociative buchise uf. the associativiy of tensor products, the isqmpiphism Class of Fis an
identity element, and [DFE] {y'an ifvérse for 10,

The'-representatipns_.c_jf G

‘PROPOSITION 7.36 The dimension of the tenirs of F|G| 25 an F-vector space s tie
_winber of conjupacy classes in G,

PROOFE. Let (,....Ct be the conjugacy ilasses in G, and., for each [, Jet ¢y be Ihe element
chq & in F[G]. Wg shall prove the:stranger statenient;

centre of F{G] = Fe1 @ @Fey (32)

AS$ g1, ....,r-ure obvioysly lingarly indepéndent, it suffices. to show (iat they span (he centre.
Forany g & G and 3. s mge & F[G),

#(2 e e0) £h= Yo agas™

The coelficient of ¢ i the fight hand sam:is o g g+ B s

_ g_,(zmc m!,_a_) e ﬂ'zae(‘ Mgetyg..

"This. shiows that 37 o trar Lits in e centre 6 £§G7 if nod only-if the. function @ ++ my is
constant on-conjugacy classes, Le:if and-only if 3, o a2 € T, Fr: a

REMARK 7.37 A dlement T, o i of F[G] can beregarded as a.mip o -hamg: G — F..

In this way, F[G} oz Map{G..F}. The action of ¢ on F[G] tomresponds to the sction

{efHay= f(g'"'u) ofgeGonf! G -+ F. In the-above proof, we showed it -the

elements of the centre of FIG] correspond exactly to the fanctions /G — F that are
constant ¢n-each conjugacy class. Such funclions-arg calie:d class ﬁmmaus'.

T the mmmndc.- af s chapteis we tssitme Ahat F i an algebraically closed ficld of
characteristic zevo fe.g., G

PROFOSITION 7.38 The group J.fgchra FG] s Jsomommr: to 2 product-of mateix algebras
aver F,

PROGE, Regall that, when F has characleristic zepo, Muschke's theorent (7.9 implies thal
F(G]4s semisimiplé. dnd sa is'a product of simple algebras (7.35). Bach'of these 15 a malix
algebra over Jdivision dlgebra (7.23), but the only. division algebra over an algebrajcally

closed feld isthe Held liself (7.20) o

“The vepreséntation G- GL{#g)F [G]).is cailed \he regulor representation.

THEOREM 7.39 - (1) The nuinber of fsomorphism classés of simple- F|Gl-modules is équal
tivthe number of conjugacy classes in G,

(B} The nultipifeity of any simple cepresenfation § in the tégular reproseriation 1§ équal
{o'its degree dimg S, '

{c} Let 5y:. ..,S, be.a set-of representatives for the womerplism chisses of sipple

FG: mod'ufcs, andlel f; = dimg 5. Then

E_lsa’sr f"z.= IG1.

v_:isumorphism of F-vector spacest, When M = N‘ this becomes-an ispmorphism of Fe
algebray. For example,if M is 4 direct sum of in copies of My, then

Biidg{ M) = Min (End4(Ma}) (30
{m >t miatrices with coefficiens in the ﬁn_g._E__n_dA(Md))‘
THEOREM 7. 33 Lot ez fi ni:cdimensfnnai'F;»\ec!orspace, and let A beun F -subaigebia.

of Endr (V). If V" is semrs:mpie as an-A-module, thed the centralizér of A fn Eud;-(l*) isa
product of sisple F-afgchras thence it iva semisimple F -algebra).

PROOF. By assdraption, we éan writé V & @B, vy 87 where the Sy dresimple A-madules, no
wo'ef which are Isomorphlc ‘The centtalizer of 4.in Brid g £1) is Endq (V). and End4{V) =
Endﬁ{{{B‘ ri S5k Because Hom,ﬁ(sj.&} =0 fori # J,

Endy(BriSi) = [, Ends ;) by 630)
= [T, Mt} by

‘where D; = Enda{S5:). According to Schur's lemma(7.24%, By is a divisfon algebra: and

therelore M,, {£,¥is a simple Flolgebra (see 7.16), o

THEOREM 7 34 -E‘fc:ry:semi.-ﬁmp}e Folyebra is is"ammph:"c to a product of simple F-
alpebag.

Proo¥, Choose an A-module V' on-which A'acts faittifilly; for example, 1V == 4.4, Then 4
is-equal to jts double ceralizer C{C(A)) in Endp(V} {see 7.21). According [0 Théoren.
7.33, C{A) #s semisinple, and sé C{C(A)) is » product of simple algebras, a

Tndnl P

aver 3 ple F-algebra

Let A= B % C be a poduct of Fealgebras: A Bimddule M Bécoines an A-module with the
1ctmn
(hochur = b,

THEOREM 7.35 Let.d bra s'cu_iiSi'nJﬂg F-uigebra, siy, A= Ay %o x 4, with the 4;
sitmple, For eachi A;, let 5. be a simpde A;-module {ef, .27

fa) . Euch 5 i¥a simple A modhle and every simpic A-module is isomorphic 16 éxactly
‘of the .
{b} Bvery A-modale i§ fsomorphic to &'r: S for some r; € M, and twa aledules e S
and @8 arc isomorphic if and only if i = Ff faralii;
PROOF. (ay It is obvious that each §; is.simple when regarded as an A-module, and that no
Iwo of them are isomomphie. Tt follows from (7.25) tlmt,,pi . @ o S, for same #; £ M. Let. 8
be a simple A-module, and lerx bea noéerd elément of S, Then the map a &+ ax: FEEE R
{5 sutjattive, dnd 50 1§ restrction to some S in 4.4 is nonzero, ‘and hepde an 1somorph1sm.
(b)-The fitst part Tollovs from (3} and the definition of & semisimplé ring, and the secdnd.
part follows frém (7.1 13, B

FrOOR, {a) Under. our hypothests, F[G] ij {F) KX Mf,(f") for some integers
Fieeeoy fr. According 1o Theorem 7.35. the number of ispmiorphism. classes af simple.
F{}-modules is-the mumber of factois 1, The contre of s product of #- algcb'rai is the:
producl of their centres, and 5o the centre of F [F] is isomorphic 1o £ E. Thetelofs ¢ is the.
disuension of the centre.of F, which we know equals.the ber of conjug y classes of G.
{b) With the notations o (7.15), M (F)e= LIy @ L{ ).
{c) The cquatity is simply the statement

D jeg S My (FY = dinip FIG).

The charactersof G

Recall that the trace Tri- (i) of an endomorphism o V — V of a vector space ¥ is ¥ ay;
whizre’ {21y} Is the matsy of e, with respect to.somie basis for ¥, -1L.is independent of the-
choice of the basis (ihe {races of_con]ugatc matrices are cquil). )

From each representation of g =+ g2 G ~r GLLY , we obtain afunction yyr on G,

xv(g) =Tev{gy)

called the character of p. Note:shat yy.depends only on the isomamhism class-of the

Flt7]-medule ¥, and that xy is.a class function, The chaiacter -y, i said to be simple (or-
irfedicible) il il 1y défined by a simple FG—'mbdul_r.:’. The principal chiaracter Z1-1s that

defined by the trivial ropresentation of G (5o y1{g) = | for dll g€ &), and \he regular

claracter Yoy 15 thal defined by the regular representation.. On compuling. Zreg () Dy using,

the elements oG as a basis for F[G] one see that ¥reedg) is the number of clements « of
G such that g = w2, and so-

i [ G} ifg=e
Kiaghlp) = [ 0 utherwise.
When ¥ has.dimension 1, the character. xv of pis said to be linear. In this case: GL{F) =

F¥,and sp Fvied = ple} Therefare, v is a horhamarphisny G- = F*, and so IhlS
definition of * “linear éharacter” essentially agrees with the earlier one.

LEMy1a7.40 Forany G-modules V and V',

Trey = XV Q¥

PROOF. Compute the matrix of gr. with respect-Ia & ham ol ¥ & ¥ tha 1'; made By-
combining a basis for ¥V iwith-d basis for ¥, o]

Lot 8, .. A,S; be a-5et of representatives for the |samnrphlsm classes of SImpIe FiG=
modules with §1 chasento be the irvisl representation, and let x1,..., ¥+ e the correspond-

ing chuficters,

PROPOSITION 7,41 The fancions ¥y.....x; are Mncarly indepeindeit avéer Fy ie, iF
Clpueeily € F are suich that itk = 0 forall-g & G, ticn the ¢; afe 2ll zcto,



PROOF. ‘Writg FG] = Mﬁ_(r).x;‘-x My AF), and leteg = {6, N R 'I"hcn.q;
nets as | 605y and a3 0 on Sf forf # f,.and so
o e dimp 8 i
xitesd= { g o olh;nvi.:'r{‘. &)
Therefore, .
zi'{-‘m('—'j} = fi
from which the chaim follows, o

PROPOSITION 7,42 Two FIG]-modules dro fsomorphic it aii only if heit charaoters are
-egual,

PROGY. We have aiready observed thut the character of a representation depends only
on ity isomerphism class, Conversely, if V = B g €050 206 B, then it charactér is:
AV = Digir O A1, and (33) shows that o; = yyr (-g;_}/ fi. Therefore yy detérmines the
muitiplicity with which each'S; veours in ¥, and hence it determines the isamorphism élags
of ¥, o

-ASIDE T.43 Tiie proposition is false i F js-allowed to bave éharsetéristic P # 0. For example,
the represemtation @ i {5 £): Oy v GLA{FY of (7.0c) s no mivial, but it has-lhe same charicter
as the trivial.sepresentalion. The proposition is falée even when the: characierisc 'of F deesit
divide the grder of the group, b g: forny o1 G~ GL{V), the chamcrer of the
fepresentdtion of G on pV¥ is ideatically zero, However, 3 theorem of Brauer and Nesbitt says that,
-fiar fimite-di o0l represen Py dnd pa of an F-atgebra A, if py{a) and paie) have the sune
characteristic polynomials for alf 4 & A, then'the representntions are isomorphis (f, moBSR0L

Any function G~ F that can be expressed is a Z-linear combination. of charncters is
salled a viriual chargeter?

PROPOSITION 7,44 The simple characters of G forh o E+basis for the virtual charcters of
G,

PROOR. Let yy,..., ¥¢ be the Simple characters:of G, Theri the charicters of G-are exactly
the clasy funictions. thal-cari be expressed in he Tomn Smy xp. iy £ B, and so the-virual
characters are exactly the class functions that can be-expressed ' m; Xivtt € Z. Thereforn
the simple characters certainty-generate the Z-module of virtual characters, and Proposition
7.41. shoss that they sire finearly independenit over Z fever over F): -

PROPGSITION 7.45 The sitmple characters.of G form an F-basis for the elass fapétions on
G.

PROOE. The class functions. are the functions from the set of cohjugacy ¢lasses in & 1o
F. Asthisset hast clements; they form dn Fuvecior space of dimension 7. As the simple
chagdclers dre.a set ol f linearly independent elements of this vectorspace; they must form a
trasis, 2

ASome aughors eall it @ gerieralized character,-hut this s To be avq:deaf there ds nore than onc way to
generatize the noten of a chapacsr,

PROOF. The group:@ acts on the space Homp{FF, W) -of F-linear thaps V' = W by the
rule, . . ; .
wE ¥,

(gedu)=gle(gw). g€ G, @eHomp(VW),

and Home (V. W)F = Honipg (V. W),

i

-CORGLLARY 7.50 If x and 3’ dre simple characters, then

1 j"f._}_' =yt
0 otferwise.

(el = {
Therefore the simple chardctets form an orthopormal basis for the space of class functions-
on G-
The character table of 2 group

To be wrilien.

Examples

T be written,

Exercises
7-1 Let € be ana % # malrix with coefiicients in 2 field F. Show (hat
1 & Mp(FY M C =0}
is a loftideal in .M_,,-_(FJ,-and'ihaticvery-lgt’_t ideal is of this form for some C.
7-2 This 'e_xctcise shows how to fccovcpa‘ﬁ'hi_te_.gmup & fromils eategory of representitions
overa AEld &, Let  bea finiee set, and Jot. 4 be the sot of maps§ - f.
{2} Show that A becomes a cnmmi:_t:itive_ﬁng.ﬁi_thmt prﬁc_i_ucrj

AN = i) Alg). fi asid, geG.

. Muircovér, when we identfy ¢ & & with the constant Tonciion, 4 becomes a &-alpebra.
(&) Show that. )

A by {product of copies of k indexed by the clements of § I8

125

und that the &y are exactly the minimal k-subalgebeas of 4, Dedoce that-'éndh;g(,-i) =
Sym{S). . '

€ Lt (fi. oy e Ax A actan Sx 8 by (1, fo)ls1,63) = Ji(s1) f20s2): show that this
defines.a bijection 4 @ 4 = Map(§ % 5,4}, Now jake § = G.

(d} Shaw that the map £y: &~ Endpypea{ A,

(m(;é){-)(g’_l=-J_'"{'_83’), fed greG

We Hine asstiine that F is asubfield af C srable under complex coufugation ¢ 15T,

For glass functions f) and fy on G, define

@@=ézmm@mﬂ

LEMMaA 7456 The paieing (1) is am fnner product on the Fuspace of vlass fiinetions on G.
PROOF; ‘We.have 10 chesk:

Ufr+ /2l £} = (A1£) /2l f)Fok all class Funetions fi fa, /'

WfilA) =l fy, fa) fobe € F ind-elass functions f3. /3,

{f2l 1) = (H] /2] For alf cfass fimctions fq, far

CF1F} > 0 for all nonzero class functions J.

LI < BRI

Al

of these ars obvious from the définition,

of

For an F{G]-module V, ¥ denotes the submadule of elements fixed by &+
V8 lneV|gu=1y forull g € G}
LEMMA 7.47 Letr be the clenent 1o Taesa-0f FIG}. Forany FIG}-modute V, my is
& projector with imaje 6.
FROOE. Forany ge G,

e !y '
&= f_G_on_'E_G xam= 'EE'E'Z&@G = (34}

feorn which it follows that = {inthe: Fealgebra FIG). Therciore, forany E{G]
module ¥, x§ =y~ and 5o we is o projector, I v is in its image, say v =-ruyg, then

o
o= gavg = g =
and 50 v Ties in V. Convorsely, if v. & V'@, thie abviously 7y = B Loae 8% =, and 50

v i in the intage of . I

PROPOSITIDN 7,48 Forany FG]-miadule V',

b e
dimp ¥ = oo T i),
eV = 1 2sea 17 @)
PROOE. Lot 7 'be as in Lemma 7.47, Because ap is a projector, ¥ is the-direct sumyol
Jits Q-cigenspace and its k-cigenspace, and we- showed that the Tattey {s VG, “Therdfore,
Try(mir) = dimp V. On the otherhand, because the triee is o Hricar fenctian,

| 1 "
Try{ry) :-ﬁzﬂ_ﬁq'ﬁfﬂav-): ﬁ_zﬁan(ﬂ}x

THEOREM 7.49 For any F{G)-moduics V. and W,

difn p Hom gy (V, W} = Gevlrw).

(€) Detine 4: A — A @ A by AL/ Megi, £2)'= Flg1g2). Show that, for any komomor-
phism & A ~ A of k-algetas such (L ® e oA = Avg, there exists 4 unique element
£ € .G such hate(.f) = g for all 7 e A: Hint: Deduee from (b) theat there exisis 4
bijectidn @: G~ G such that (e (g).= £ {pg) forall g-€ G, From the bypothesis.
om o, deduce thet $ig) g2} = g1 $(g5) fcall g1, £3 € GER). Hende plz) = g-gle)
forali p& G. Deduce thataf £) = dle) / forall f € 4]

{f} Shdw that the folloWing maps dre G-equivariant

ek'—+ 4  (uivigl représentation onk; ry on A
mASA-— A (ra@racn A@diry ond)
Ad >+ ABA (rijon AT @rgond @A)

(£} Supposc that we are given, for cach fnite dimensional representation (V,ry), 4 k-
linear map Ay, If the-family {Ap} $uristies the condilions

i) for all representations ¥, W, dvaw = Ay @Aw:
i) for & vithi ity \eivial reprosentution, g = idp;
iii} fordll G-equivanant maps a: V- W', gron = o dys
then there exists.a unigue g € G{R} such hat Ay = rp (g} for a1l ¥, [Hine show thar
A4 satisfies the vonditions of (d).}

N o7es - For n'hi's_lo_n' rak account of the representation theory of finie groups, emphastzing the work
of “the-four prinelpal. contilbtors to the theary-in its {omative siages: Ferdinand Georg Fiobeniis,
Wilkism Burmside, Tssai Schur, and Richard Brauer”, see Cuete 1609, ' ’

Al a'time when many physicists were g-giving up an even the possibiflity pé-
developing an-upderstanding of pacticle physics using the technigues thit had werked

sorwell with QED, Gell-Man, i’ 1961, discovered {he impertaite of group Hhedry,
swhich gave it a iathematieal too) {0 elassify the plelhoraaf new elementary particles

aéeording To-their symmelry. propertics., .. In-Gell-Nann’s scheme . . s ihe difitrent

‘particles (1] inio sels of representations whose propertis . .. could bo-graphed so thi

they: formeil the-vertices of"s polyliedron; dnd all of thie fiarticlss in each polyhedran

tould ihen be transfonmed intn cach oihet by symmetries; which could effértively rotate

the poiyhedron in différent diréétions.

Lawrence Krauss, (Jinntion Man, p,28%
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APPENDIX

Additional Exercises

34 Prove that a finite group G .ha_ving just.one maximal subgroup. must be A cyclic p<géaup,

7 prime:

35, Ler'a und b-be two elemens of S3. [fa and b both have-order 146 andab'= ha, what
are th passitle dxders of the product ab?

37 Suppose that the  group G is geverated by a-set X

(a}. Show that if gpteX fornl] « € X, g €G, Ihen the commtator subgroup of 0'is
generaled by the set'of all eleméms X }x"l ¥ ork.y e X

(b} Show that if +2= 1 for all xeX, then the subigrotp H of'G geserated by the sétof
al} eleéments xv foi x,% € X has-index L or 2.

33. Suppose p= Fand 2p ~ 1 are bl prime numbers {e.g:, g = 3,7.15,31,...}. Prove,or
disprove by: examplc. thal every. group of ordér p{2pr— 13is commutative.

39, Lér # be'n subgroup of a.group G Provelnr disprove the following:

{0} I G i finite and Pise Sylow p-sithgroiy, ien &7 1 P is a Sylow pi- suhgroup of H,
{b)- If G is finite, P is a Sylow p-subgroup, and: H Ng(P) then Ng{H)=
A{c) It g is an clement of G such thatgH¢™" < H . then g & Ng{H):

40. Prove that there is no simple groupof dider 616,

41, Lot p and & by integées 1 < & <. Let H be the subgroup of 5, gotierated by the
cycle (a1 . ..ap). Find tie ordér of thie centralizer of. F1.in 8, Then find the efder of the
normatizer.of K in . [The centrafizer of H is 1he set of ¢ & G such ghg“' =k for all
h.g H. Itis agwin asubgroup.ef G

42. Prive or disprove the following stitement: if & is.a subgroup of an inifinite group G,
Wenforall v € Gy xHx~V Ol =5 x VI H,

43, Lot # be a finite nofmatsubgroyp of a_grbup':'G-,.and'jel_ g be an clement of G, Supposc
that g hasorder wand (hat the onJy element of A that commaies with g is 1 Show that;

{4) the mapping fii—~ g —-behisa bijection from 5 to, Hy
b} . the coseL g i canidists ofelements of G of ordcr K.

57. Prove that every maximal subgroup of afinite p-group is neomal'of prime index (p is
prime). : ; : "

58. A group G is.metacyclie ifit hay a cyclic nommal subgroup N with eyclic quatiehn G/ N .
Prave-that- suhgmups arid quoliént groups of metacyclic groups are melacyclic, Prove or
disprove that direel products:of metacyelic grotips are metacylie,

59, Let G be a group ac{ing doubly transiiively on X, and lot x & X, Prove thai:
(a} The stahilizer G of x'is a maximal suhgmup of G.

(b} If & isa nommal subgroup of G, then dither A is contained in Gy orit acts transmveiy
on X,

60 ‘Let x; y-be elensents of a gronp such that xpx™! = »5,x has order 3, and y #1 has
add-order. Find {wilh pmof) the ardes of- v

61. Let Ff be a maximal subgroup of G, and let A be a normal subgroup of £ and such that
the conjugates of A in & genemte it.
(a7 Prove that if N is-2 normal subgeaup of G, then dithir ¥:C & o1 G = Nd. |
(b} Let M be'the intersection of the conjugaies of i_n . Prove that if 5 is equal to hs
-contmutator subgroup and.A is abelian, \her G/ M Is 4 sinple-group.

62, (a} Prove thal the cenitre of a nonabelian group of order pj,' P prime, has-order 3
{4 Exhibit a-nunabcli_an;g_r_bup of order 16'whose eentre isnotcyclic.

*63. Shaw that \he group with peniefators.o and f and defining refations

a® ='|g.‘;2 = (a'&)z =1

‘s 1somiorphic-with the symmetric proup Sy of degree 3 by giving, with pfoof, an explicit
somorphism.

64, Prove.or give a counter-example:
{a} Every group of order 30has a normat subgroup of ondér 15,
(&) Bvery imup of order 30 is nilpotent:
65. Letr &%, and let G beabe froiy with geuerators X.p'and relations £y~ e v/, a3 a2 |,

(&_i) Find necessary -_and-.su_fﬁc_l_anl_cnndmons.{m t for & to be findte;
(b} In case & is finite, defermine jis drdec.

‘66 Let G ben gmup-ol"drder ‘PG, P.# q primes.

@ Prove G is solvable.-
{b} Prove that 7 s vilpotent <= G is abelian <= Gis cychc
{c) 1s ¢ always ilpotent? (Pruve wrtind a counterexample.}

67, Lot X bea set with P elements, p pnme, and let G be a finite group aclmg transitively

on X, Brove that évery Sylow p-subgroup of G atia transitively oo X

68, Lot G = {u, b, | be = cb, A== =} aeat =, aba™? = fic}, Determine
the grder of G and find the derived series of G.

69. Lot be a nobuivial nocmal subgraup of 2 nilpotent growp G- Prove that N (1 Z2(G) & L
i Do not dsseme Syl ow's theorenss in this problem:

‘44, Show thatif & permataiion if 2. subgroup G of 5, maps ' 10 ¥, then the ndrmiatizers of
- the. stabilizers Stab{x} and Stab(¥).of x and y have the same order,

45, Frove that if:all Sylow subgroups of'a i'mit_c group G are pormal and abelian, then.the
group is abelian.

46, A group is genetated by two'clements o and bosatislying the relations: o7 = b%,4™ = 05
&7 =1 where ii.and n are positive Titepers. Far what:values-of i and 2 .can'G hé infinite.

47; Show that the group G -geaerited by clements & and ¥ with defining relations x% =
yi= {,\-fy_}“ = 1.i2 4 finite solvable group, and find the order of G .and its successive dedved
subgroups G', G*. 6™,

48, A provp Gis gcnemu:d by 4 riormal'set X of élements ol order 2. Show that the
comimutalor subgroup G''of G is generated by afl squares.of products xy of pairs of
eléments of X.

49, Detenmine the normalizer A in GL,,(F} of the. subgmup H ufdlagonal matrices. and
prove that N,«’H is 1501110rph|c 10 e’ bymmcmc group Sq.

58, 'Let G he'a group with generators ¥ and » and defining relatons x2, 37, {xy)* Whatig
the tridex in & of the commutator proup. G of G.

&1 Let G b 4 finite grong, and H the subgroup penerated by the Slements of odd order.
Show thul & is normal, and that the order of G/H isa power of 2.

‘52, Let'G be a finjle geoup, and P o Sy]ow P 5uhgrnup Show that if # isa subgraup of G
“such that Neific H < G. then

(#) the nomalizgrof JE In'G s
thy (G H)i= ) {mod p).

53 LetGbea grou_p.of order 3325, Show.ihat G is solvable. (Hint: A fitst step is to find a
nofmial subgroup 6 prder 11 using the Sylow thégrems.)

54, Suppnsc that ¢r is dn endomorphisim of the groap.& thatmaps G ontd' G aid commutes
with 211 fnner attomorphisms of ¢, SHow that if'G is its own conmiutator:subgroup, then
ex = x forall xin G,

55, Let-6; be afinite group w.ith-gencmmrs s and ¢-each of ardér2. Letn =i | 12,

‘{n) Shew thal G has & cyclic subgroufy of drdef n. New assuma:d odd,.

{b) Treseribé al] conjupacyélasyes of G.

{c}- Describe.ali-subgroupsof G of the form Cix)= {y e |y = },\‘} re6.
{d} Deseribe-all cyclic subgroups of G,

(¢} Descriie all subgronps of G- in wmmsof thiand {d)..

) Verify thitt aif two ji-subgroups of 6. afe conjugate, {p prime].

-5, Let & aci transilively ona sot X. Let.¥ be 'z normal subironp of G, and let ¥ be the set

of orbits of ¥ in . Prove that:.

tad Thereis a fratural action of (7, on ¥ whichi is Iransitive and shows that every orbu of
N -ofi ¥ has the same cardinality.

(b) Show by exampla that if N is nit nonmak thén its ‘orbils need not- hiive the simé
cardinality.

{1} Let A be-a subgroup of a finite group &, and P 3 Sylow p-subgrovp of &, Prove tha
there exists an x € G such that xPy™ TN H isa Sg,-low p-subgroup of H.

1 % ...
(b} Prove that the group-of 2x 2 matrices b is g S)rinw p-subgroup of
0 1,
GLa{Fp).
(4] Indicate how (a) and (b) can be used-to prove that any finité group has a Sylow
p-subgraip.

71 Suppme H 13 o normal subgioup of @ finite group G such that G/H i5cyelic of order n,.
whire it ig relatively prime to (G £ 1), Prove it G s Squal to-the semidiveet produer H % 5
with §-a cycllc subproup of G of-order 1.

72, Xet H be o mintmal nomal subgroup of o finfte solvible group G-, Prove thii, /i
{somorphic to a direel-sum of cyelic. prewps of order p for some prime p:
73, {2} Prove.that snbgroups -4 and B of a group & are of finfte index in' G i€ 2nd pnly-it
AN B is of finite index in G.
(b} An elemsent x of a group G is said to be ai FC-cleiént if its céntralizer Cg (x) has finite
index in G. Prove that the sel of all £ C eleinents in & is a normal:
74 LerGhea Broup of order p qz for primes p > g. Prove that § hisd norma! subgroup
of order p” for somien = 1.
75. {a} Let K be 2 finite nilpolent group, and let-L b2 subgroup of X snchthat L+8K.= &,
where §K.is the derived subgroup. Prove that Z = K. [You may:assumic thal  finite. group
is nilpotent if and only if every. maximal subgroup is normal.}
{byLet G be s finlie group, I G has a'subgroup H such thal both G/8H and H are nilpolenl,
prove that' G s nilpaten. '
T6. Lel. G be 3 finite nnnc‘:ycli'g p=group: Prove thal the following are cquivalen:

Wy (G 20D £ p:

{by Every maximal subgroip of G s abelian,

(c_} Thereexist: a_t least two maximal subgroups that are abelian.

77. Prove that eyery g_mup_-G uf arder 56 can be written {nentivially) as a semnidirect product,
Find (with provfs) two non-isomorphic non-sbélian groups of arder 56.
18- Lev G be a finite group and ¢ 1 &7~ & u homomerphism;
{a} Prove that theze is'an integer & =  such that @" {G). = go”i {G) for all-integers m = a1,
Lete =4,
by Prove-that G is the semi-direct: product of the subgroups Keror and Imie.
{cy Prove that [ime is nomaalin'G or give n counterexample.

79, Let § be a set af represcalatives for the comjuiacy classes io a finite group Grand let J7
be a subgroup of G Show that § ¢ — H = 6.
80, Let G be.a finite group.
{a)- Frove-tia there is a unique névmal subgroup & of ¢ suchthat (i} G/ K is solvable-
and:{iiy if N is a normal- subgroap and G/ N is solvable, then NoK.

"{b) Show that & is characteristic.
) Frove that & = [!t K] and that & = I or K is nonsolvable.



APPENDIX

18 By assumption: the. set & Is nonempty. solet g € G, Because O satisfies the coniellation
law, themap ¥ 6 dx1 G - G is & permutgation-of G, and some power ol ihis pervnuitation
is thie identity permylation, Than:fnrc, forsomen =1, a"x = xforaliy € G, and s0a” is
aleft neutral efeinent. By coualing, out sees that every clement hus a teft inverse, and 50 we
can npp]y {1.18a).

19 Lét& be-such that the fight multiplication - vh is injective. Letag & G- there ix

Solutions to the Exercises

These solintons fall somewhers between hipis and witplete Sultions, Stid,
fo wiite put corplere sofutions,

siits were dxpected

1.1 By inspection, the only elcment of order3-is ¢ = a* = b2, Since. geg~" alsohas order
.2, itmist eguat £,4.0:, gr:g"1 = ¢ forallg.e §. Thusccommutes with all elements of @,
and {1, ¢} 5 a normal subjroup of 0. The remiining subgroups have orders 1, 4, or 8, :md'
are awlomaticutly normal (see | 3]

1-2 The prodiétap= [ * ) and (! 1”':(‘ "
12 Th tab={o Jand (g ) =(g )

-3 Consider thic subsets {g, 2~ l} of G. Bach set hos exacily 2 elements unless g has onler
I o 2, in which case itHas | element, Sivea & isa dlSJOIHI uniion of These sets, there must be
a (nonzera} even number of sets with I element, and hence at Jeast one element of order 2,

1«4 The symmetnc group Sy.-contains a sehgroup that is a direct product of subgroups Sy,
g

-5 Becuuse the group G/ has order it (gN )" = 1 for every g € O {see L27) But
{gNY* = g" N, and 50 g” & . For the second statement, consider the subgroup {1,5} of
D3 Ihasindex 3 in By, but the clenvent £ hag-order 2, and so 1% & ¢ £{1,5),

1-6 {a) Leta, b & G. We dre given that 4% = b = {¢B)? = ¢, In garticular, abah = o, On
milliplying this on right by. ba, we firid that &b = ba, (b Show by induclion that.

1 a by 1 na u_b—t--ﬂi—uar
ol el = .
o0

21 ne
LU 1
17 Commensuribility is. ohvicusly reflexive and symmelric, and 50 it siffices to prove
transitivily. We.shall use that if:2 subgroup H of a proup G 'has finite index in G, thes HOG'
has finite Indes in G for any subgrouft G of G (because the:naturl map G’/HHG’ -+ GfH
is injective), Using this, it follows tha if 7y and M3 are bolh commgnsurable with -, then
Hy 01 Ha () Hy i of finite index in H; Mz and in Ha ) f5 (and therefore also in Aand
H;) As 51N Ha D Hy o Hy © Byt also has finite index in each of Hy and: H;

2-8 The elements x%, ¥y, y2 lic in the kemel, and it is 2asy fo.see that {x, plr?, x5, y2)-has
-order {at mbat) 2, nnd 50 they must generate ihe kernel (at Jeast.as anoermal proup — ihe
‘problem is unclear). One can prove directly that these elements are free, ar else apply the
Nielsén-Schreier theorem (2.6). Note that the formula on-p, 34 fomrectly) predicts that the
kernel is free of rank 2.2—2-41 =3

'2:9 We have'io $how that if.s dnd I are elements of o finite. grodp gatisfying 1153 = 55,
then the given element g i equal to 1. Beciuse (he: group is finite, 57 = 1 for same 1. 3£ 3[u,
the pivof is easy, and 5o we suppose that ged(3, 1) = 1. But then

Ir4ar =1.somernr ek,
and so5* =5, Henee
= !..-‘1_53!!. = (‘.--l,ﬁ_}r':_sSr
Now, )
g=s U s ey e I =

-as-required, {In such & quesuon lewk for o pattern. Mot thar g hais two oinjogates init, as
does the relation for &, and soitis naturnl th trytn relate them, 1

3-1 Ler ¥ be the unigve subgroup of pfder 2in.&, Then &/ N -has order 4, but there s no
subgroup @ ¢ & of order 4 with D 114 = | (because every groep of order 4 contains a
group of order 2, and so G # N.» { forany ‘0. A simitar argamen applies to subgroups
N of order 4.

32 Forany g€ G, gMg isn subgroup of order m, and therefore equals M. Thus M
siniifaly &) is normal in &, and M N is u subgroup of G, The order of any element of
M ON divides godfm. ) = 1, and soequals 1, Nuw (1.31) shows hat M N = MN,
which thetefore has order.rm. and so eguals G.

3-3 Show thiat GL{Fa) permutes the 3 nonzero veclorsin ¥, x Fy (2-dimensional vector
space aver Fa),

3-4 The following sulutions were suggested by readers. We-write the guaternion group.as
@ = [, bl ok ok,

(A} Take 2 cube, Wiite ifié six eféments of ) of order 4 on the 8ix faces with #-opposite —i;
cic.. Bach rotation of the cube induces an sutomorpfiism of 3, and Aut{ @) s the: symmetry
group of the-cube, S4. {B) The groug ( has one clement of order 2, namely —~1, .and-six
cloments of order 4, numely, 2/, &7, 2. Any. aulomcrphrsmrx of @ must map —1 to itself
and-permutle the clements of arder 4. Nowthat i =&, fko=1, E{ =4 's0 - must send ihie
ciréularly ardered sel 7,/,& (o 2 simifar set, i.¢., to one of the, eight sets in the following

tahle; .
i o~ - j —k
ik = —f =k -
o=k e

Hecauie ¢f—11 = — 1. ¢ muet sermuie the raaes of He taddn and 5 e nnt AFEalp tre oos b

b tnique ¢ € G such that age = ap, Then ageh-= agb, which implies that e = b. Then
aeh = ab for all« € 4, which lmpllcs that ae = &, Thcreforc eisa nght nentral element.
Foreach g € G, lhere 154 unique a’ suck that ad’ = ¢, Therefore 5 also has right inverses,
and soit is 1 gronp (1. 10a),

Let G be:a set, and consider the, bmary opeqation @, 5 ++8 on.G. Thisis associalive, and
i Jefit multiplications are bifective Gn fact, the identity map), but G is not a-group if it hag
8 {east two slenients,

24 The key point is that {a} = {a%) x {a"}. Apply €1.50) 1o sce thel Dy, breaks ug as &
product, P 6L Lzn DICAXS OB

2.2 Note first that any griup generated by a commuting set of clements must be commu-
tative, and 50 the group G in the problem is commtative, Avcording to {2,8), any lT!d.[J
{1t = A with 4 commutative exisnuds uniquely to hnmomorphlsm 7 - A, and 50
el ha.s tha universal property that Sharacterizes thio froé-abiehan. group an the generalors a;.

23 {2 T b thepthe woed 4+ ad™" - 54 frodnced and 5 1, Thesefore, b = 1,
thén g-== b, (bj is similar: (£} The reduccd form 6Fx™, x =1, has. iength at least i

24 (a) Umversahty {b) Coxi % Cog 15 comniutative, and (he anly commutative free groups:
e 1 and Coz {¢) Suppose # is 4 nonempty rcduced WORLIN X1, vor By S0Y 0 = Bp4m0 {OF

++). For § #, the reduced form of Ix;, va] & u,axj"a"‘ cart’t be empty, and so @ and.
r_, dnn t¢ommate,

2.5 The unique element of order 2 is 52. Since gb" " alsn his order 2 forany g € Qi
we see thar gb%g™! = b2, and su 4% lies inthe cenire. [Chéck-that it is the: full geritre
The quoncm geoup 3, /{b‘) has -genequtois ¢ and 4, ahd telations ¢* L= 1.
bab=l = a1, which is & prescntation for Dyr-z {see 2.9},

2-6 (a}.A comparison of the présertation Dy =-{r.x | rs2,srsr = 1Y with that for &

suggests puiting r =ab and s = a. Check {using 2.8) that (here are homomorghisms:
Dy—= G, rreeab Seraq, G—Dn @r>s5, b g7,

The composites Dy ~» G — Dy and G = Dy — G are the bath the 1dcnuty map-en-

genetafing elements, and therefore (2.8 again) are identity. maps, {b) Omit.

2:7 The hint-gives gb?g ™" = bc’b“‘l Buth? =
¢ = 1. From acac"’ = | this gives o2
givesh = 1.

L Soc® = I, Since e = 1, this forees -
= ] Butg?=T, S0 2 = 1; The (inal celation thep’

10 & {fu 0 0
¥=9[0 1 c|rand@={[0 a 0]
oo 1 ¢ 0 df

satisties the conditions i, (i1}, ¢iif) of (3.8). For example, For (i) (Maple says thar}

@ 0 B\ (L0 B e 0 B\ 710 ~balran)
Qua ¢f{0:1 ey {0 a o] =]0 1 ~E & e +an)
A0 df\o 0 1fvn 0 d I

noo
T is iova direct producr.af the two groups because it i not commutative,

3-5 The pair

'3-6 Let pgenerite Cog. Thend the dhly other. gcneratnr is #~% und the ouly nowrdvial

nummorphism is per g“ Hance Aut(C.,u] = {il} The homomorphisoy Sy ~» Aut{$3)
is fijective bevause 205y} = 1. but $3 has exactly 3 elements o, az,ay of order Zand 2
clements &, 5% of order 3, The clements @y, generate Sy, und there gre dnly 6 possibilitics
for elay); ), and s0 53 ~ Au(S3} is ‘also onto.

37 1) The element. g% & N, .and so has order dividing ¥, {c} The element F=
{1.4.33(2. 5}, and 30 this is obvious. (d) By the first par, (€1, 0,....0),4)" =. {{1.... 1.1,
and (k... 1) has order gin (Ca?. (&) We have (1,4} ,4) = (rm‘“' ag) = (1, l)

38 Leti-g-€ Z(G). Then

Gregll:g'y = uogy tepl el

(-g)n-q) = gag-l.gg "4 SLp = TeZid)
and o 3 .

gfﬁ}j((f, 0 - Yng | N } = ol = iy

The converse and the remaining stalements are eisy.

4-1 Let piG/Hy — G/ Hy b o G-map, and let p{H1) = gy, Fora€ G, u:(ah‘,} =
e H) = agHa Whenae H;. efahly) = gify, andso agHy =g Hy: henceg ng € Hy,
and st e & gHap. We have shown B € gt Conversely,if 2 $atisfies thig candition,
the oy 4+ ag Hy §s 4 welldefined map of G-sets.

4-2- {up Let:H be a-proper subgroup of &, and let N = Ng (7). The number of conjugates
of Fis (G : N} 2 (5 H) (sec 4.8), Since' cach conjugate of & has-{# 2 1) eleménts: antd
the conjugates overlan (atleast} in § 1}, we see that

iU gﬁg“ll <{GHIH = (G 1)

* {0} Use that the action 8F 47 on the Jeft cosets'of H defines 2 homomorphism ¢: G = §,,,
wdd Tock ar e finite group G/ Kerlg),
(¢ Lot G = GL, (k) with & an slgebraically closed field. Every clement of G is conjugate

i an upper triangular matx (its Jordan form). Therefore 6 i equal to the wnion of the
somiteates nf the girRersinr oy F 1rmas o o] e e s b eas



4:3 Let H be a gubgroup of d fibite peoup G, and dssume that A ‘containg o Jeast ong
slement from’ eaeh banjugacy clasy of G. Then-G i the union of the corjugiles of M .and
sa vie-cani apply Exercise 4-2, (According to. Serre 2003; this result goes back to Jordan jn
the 1870

44 According fo 4,17, 18, there i¢ & normal subgroup A of arder. p2, which is commuta-
live: Now show that G has an element-¢ of order p notin-¥, and dedure that G = M » (¢},
B1e.. ’

4-5 Let A beasubgroup of index g, and let-V be the kemel'of 6 —Sym{G/H) — it is
the Jargestnaemal subygronp of G contained in K (see 4.20). If ¥ £ K, then {H ; N) B
divisible by 2 prlmc g = p.and (G ;N s divisible by pg. Bul pg deesn't divide p! —
contradiction.

4.6 Embed G i Sy, abd fer N = Az, NG, Then G/ <2 .S‘z,"/A;m = (g, a0 50
(G.; Ny=Z Letabean elenicnt of order'2 in G, and 1€ fy ... ;i be 5 set of right coset
répreséntatives for {4} in . so that G = ihi.abt,... mab 1. The image of i ity Sqpy is
the prodict of the #1 wanspositions (A1.abi}e-..; (b aly ), and sinee m is odd, this implies
thata-¢ N,

47 The set X of k-cycles in. Sy is normal, and-so the. group it generates is normal (1:38),
But: when . 2 5, the only nontrivial normal subgronps-af &, are A,. and 8, itself. IF & i5
odd, then X is vontaiticd in. 4, and if K1 ‘Is even, then-it isa™.

4-8 {u3 The number-of possible first rows is 22 —1; of second rows 2% — 2 of thind rows
24225 whence (61 1) = 7 6x 4= {68. (b Let ¥ =F3. Then |Vf =27 =4. Edchi fihe
through theong}n contains exactly otie point + otigin, and spfXl=172 (r:) We mike a list
af possible chiracteristié And-minimal polynomials:.

Characteristic pely, Min'l poly. -Size. Order of eleniént i cliss
1 X' X24X+1 X+1 1 1
b ER S RN € (X1 21 2
3L NAL (X-+1¥ 42 4
4 Xl = (X EDXE X+ 1) Same A6 %
5 X%4X +1 (iredicible) Samg 3407
6 X3+ X2+ 1 (imeducible) Same 24 7

Here 'size devitites the number of elerents in the conjugacy class.. Cdse 5 Léte be
an'endomorphism with characteristic polynomial X3 + X + 1. Cheek from its minimal
polynomial that &7 = 1, and so o has order7: Nate-that Fis a free Falef-madule of rank
one, and so the centralizer of e in G is Fale] 1 G= (). Thos [Cq (e} =7, andthe number
of alements in the conjugacy ghass of o 15 168,/7 =24, Cave 6 “Exnctly the same 15 Casé 5,
Cased; Here V = ¥y@ Va.a8 an Iy [6]-module, and

Endp, o) (VY = Bridg(51( Vi) & Enid o) {V2).-

Beduce that {Ca et = 3, und st the nuinber of conjujates. of o §x 5% 168
Coloy=Fafe] NG =

= 56, Case §: Here
{a) ‘which hus. oidetr 4. Case I: Here o 1s the Ideumy element.

4-14 Since Stabigng) = gStab{xa)g‘i. ifHC Stab(xu) then A" < Stab(x) for all x; and
so H =1, Lontrary o, h}'pm.hcsm Now Stab(<g} is maximal, and so H . S!.lb(xg'] =0
which shaws that & acts wansitively.

5-1.Liet-p be d prime dividing |G| and fet P be a Sylow p-siibproup, of brder ¢/ ¥ay. The
¢lements of P all have.ordef dividing p™. and it has at most

Lok gt g _I'- m

elements of order dividing Praaas iherefore P must have an efement of order ™. and 5o it
is cyclic. Bach Sylow p-subgroup has exactly p™ clements of- order dividing p7, and so
there can be only ene. Now (5.9) shows thal. G is a-product of its Sylow ;ubgmup(

6-2 No, D4 and the quatemion group have isomorphi itator sebgroups and quatient
groups but are not isamorphic. Similurly, Se-and Ay  Cz-are notsomerphic wheny = 5,

Case 2; Hore V== Py &3 ¥ s an Falaf-modnle, where o acts as 1 on ¥y and has minima)
‘polynomial X2 +lon ¥ Either. analyse..or simply-dote that this conjitgacy-class.containg

a1l the remaining elements. {d) Since 168 =2% x 37, u proper nonirivial subgroup i of

G-will have order ) o )
2.4,8.3;6.12,24.7.14,28.56.21,24, 0or 84.

IF H s normal, it will bea disjyint union of { {1} and some biher conjugaiy classes. aid so
N V=10 Yoo with ¢ equal (03], 24,42, 0c 56, but this doesn’Lhappen,

4.9 ‘Since GfZ{G) = Aul[G), we see thae G4 Z{G} is cyelic, and 50, by (4.19) that G is

_commutative; I0G s finile ind not cyclic, iLhas 4 faclor Cpr 2 Cps cte.,

4-10 Cléa:iy (j_,r'_:] = {1 }11{17). Henee any subgronp comaining {12), (13),. .. coutains

“oll rmnspositions, aniwé know S, Is geferated by transpositions,

411 Netethat Cgixin i =Cy (¥}, and so H/ Critxy~ H-Cq{x)/ Cgtr}} Prove each
cléiss:has the.same number ¢-of clements. Then

K| = (G Cale)) = (G : B -ColW{H - Cala): Ca(2)) =ke.

4-12 (':l) The first equivaience follows from the preceding prablem, For the second, note that

o cammutes with.all eycles i its. decompésition, and. 40 they must b even {L.c., have odd

length)yif two cycles Have the same odd fengali £, one’ ciin find’a product of & transpositions
which imerchanges them, and commutes with ; conversely, shiow that if tie purtition of 2
defined by o cansists of distinet { intogers. then o comumutes only with the group generated by
the eycles inits cycle decomposition. (b} List of conjugacy classesin, 87 thc:r size, panly‘
arid fwhen the pariyis even) whether 1t splits in A,

Cysle Size Parity  Splits in 452 Cr{) containg
1 {1 { E Y
2 {12 2t 0
3 (129 wE N (673
4 {1234) 20 ¢
5 (1235 S04 £ & (67}
4§ {123458) 34 O '
7 {EMseTy Y200 E Y 720 doesn’t divide 2520
& (1234 W5 E N 67
9. (145 43
16 (123456 63 £ ~ {12}
1 {125(3456) 504 O )
12 {123)(456) 280 E N {14)(25)(36)
13 (1234a56T 420 @
4 2Gse 105 0
13 (D34M367) 210 E N (12

4-13 Aceording to GAPn=6ars ('1.3"‘]{:26_)['_4.5), bl 2)_(34}(56)_



APPENDIX

Two-Hour Examination

1. Wihick.of the following staternents are true (give. brief” justifications for each of (a), (b,
{c}, (d); give a correst set of implications for (e3),

€a) I @ apd b ute elements of a group, thena® = 1, A= | == (ah)6 =
{bY The following two elements-are conjugule in §7:

1234567 (L 23456467
_345'6'?21'_'231 a6 7 4)
ey .G md}!mfim{cgmupsand@x Asgy =2 H x As94, then G = 7,

{d} The anty-subgroup of A5 containing. (123 is Ag itsell.
() Niipotent == cyclie ==s commytative == solvable {for'a finite group).

4
5

2. How many Sylow 11-subgtoups can & group 6f ordet 110 = 2-5- 11 have? Classify the
groups of order 114 containirig & subgroup of order 10 Must every group of order 110
contain a.subgroup of order 107

3. Let G be a finite nilpatent group, Show that if every conyutative quotient of 7 i cyclic,
then G jiself is cyclie, Is ihe-statement true for nonfiipotent proupi?

4, (a) Let G be 5 subgraup of Sym{X ), where X 12 set within ¢l 5, IEG is commutative
aml acts mansitively on X, showthat each element g % 1 of G moves every element of X,
Deduce thut {G : 1) < n

{b) Foreachm > I, hnda commutative subiproup of 83, of order 37,

(c) Show that a commutative subgroup of §, has.order < 3%,

5. Let # be o normal subgronp of & group G, aid let P be o subgroup of . Assuine that
every .:uwmarphjsm of f isinner. Prove that G = H . N(,-(Pj

6. (a} Describie the group with generators.x-and p and defining rcf:m:on yay~l =gl

{b). Deseritie he group with generators ¢ and y ‘and delining relations yxy~" .
=1 ‘—1

eyt =yl

“You- m1y use fesults proved in class or i the fiotes, but vou should indicate eleardy what you
arc using.
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L. ¢a) Falsex in {a, bla®, ), ab has infinite order;
() Tru;., the-cycle decompositions.are 135732463, {123§04367),
{e) True, use the Krull:$chmsidt theorem.
{d)Filse, b group it géhierates is proper
(e} CYLI]L ==% cpmiytative == nilpotent == solvable.

% The nember of Sylow 11-subgroups é1 = 1,12, ...
one Sylow 11-subpraup P, Have

G=F oy H, P =0Cy,
Now have ta look at the maps 8-+ & — Autlc) |) = . Yes, hy the Schur-Zassenhaus

amd divides 10, Hence there is only

H=0Cwor D,

Jemma,

3. Suppost € has cliss - 1. Then G hasguotient & of elass 2. Consider
1= Z{H) e H e HIZ(HY 1.

Then i commatative.by {4,17}, which is a contradietion. Therefore & is'commutitive,
and hence cyclic.

Alternatively, By induction, which shows that (/. 2(5) is cyslic,

Nol.In fel, it's ngt even Lrue Tor solvable groups te.g., 53}

4 {o) W gx = x, thén ghx =hgx = hix. Hence § fxes every: clement-of X, agd so g = 1.
Fix g x €.X: then g b £x: 6 — X isinjective. [Note that Cayley’s thetrem gives an
crabedding G < Sy, A =(G 1 )] )
{5} Pantition the set into subsets. of order 3, and Iet G-= Gy x»
@ [_.cr.ol
Ger G-

L] £
-« Or berthe-arbils.of G, .and let Gy bz the imuge ul‘ G in Sym{O;), Then
% G,. and sa (by indudtion),

(G N E(Gy 1 1h (G, 21 53._5".\":-‘3”3" =31
S.Letg < G, andlet/r € M besuchthat conjugation by it on H agrees with conjugation by

& Then P! = hPA~" and g0 k15 & NelP).
6. (a¥1Cs the proup;, _
G = (x} M {p} = Coog Cou
+1, Ailernauvciy. ihe elements can be written uniguely in the
form xf9d 4, e T and px =x"1y,
(bl s the q_pntemlon group. From the twe relations get
-

yr=xTty, yx=ay!
and 50 £? = 2, Thesecond relition implics
x| :‘y'{:-_y?,

and o y = [,
Altérnatively, the Todd-Coxéter algorithm shows that it s the subgroup of Sy generated

by (1287}(3465) and [15843(2673).
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left, 57 ’
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trivial, 57
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ommutator, 24, 3§
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e 17
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dimension, 106
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I, 13
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exact sequence, 56
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of & group, 30, 37
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it 50
oxtension, of groups: 5
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flag

full ;7% )
Frutini's argument, 93

G-mag, 5%
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group, 7
LEat
A- 94
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Galols 69
isomorplizm, 12
Jotdan-Holder, 86
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Maschie, 1
Nieken-Scheeien 34
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primitivity condition, 42
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transposition, 14
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words
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af rgid motons, 55
of symmetrics, ¢
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with operalors, 94

Lroup.

" tacw, 21

Erovps
of order 12, 8§
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free, 31
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normalizer .
of a subgroup, &)
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prder

ofu group, §
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padition
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of & group, 35
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